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C h a pt e r  is  In tr o d u c tio n

1.1 Motivation

There is considerable interest in the relative performance of different production units 

within an industry, which is measured by the technical efficiency index. The Debreu (1951)- 

Farrell (1957) measure of technical efficiency is the radial distance between an observed 

input-output bundle and the frontier of the production possibility set A firm is called 

technically efficient when the observed bundle lies on the production frontier. Output- 

oriented technical efficiency is defined as the gap between the output level obtained by a firm 

and the maximum level of output which can be produced from a given input bundle. 

Similarly an input-oriented measure of technical efficiency is defined as the gap between the 

actual input quantities used and the minimal input quantities required for the production of 

the observed output.

In order to measure technical efficiency we need to estimate a production function 

such that all the observed input-output bundles lie on or below the estimated function. In 

other words, the estimated production function has to be a frontier. Traditional econometric 

estimation techniques fail to measure a production frontier, because they allow some of the 

observed output bundles produced by a given set of inputs to be greater than the estimated 

maximal producible output.

The first attempts to address the problem led to the estimation of deterministic 

parametric frontier models, non-statistical first (Aigner and Chu, 1968) and statistical later 

(Afriat, 1972; Richmond, 1974; Greene, 1980). A deterministic frontier treats any deviation

1
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from the observed frontier as technical inefficiency and ignores any disturbance due to 

randomness, specification errors and measurement errors.

Aigner, Lovell and Schmidt (1977) and Meeusen and Van den Broeck (1977) first 

introduced the concept of a stochastic parametric frontier methodology. Its principal 

characteristic is a composed error term. The composed error is the sum of a two-sided error 

term that represents the random shocks and another one-sided error term that represents 

technical inefficiency. Appropriate methods have been developed for estimation of technical 

efficiency from these models (Jondrow et al., 1982; Battese and Coelli, 1988). Although this 

procedure has been extended to panel data, technical efficiency is modeled as an explicit 

function of time. As a result, one can not distinguish between the technical change and 

efficiency change. The first essay of the three in the dissertation constructs a model that 

addresses this problem.

A major drawback of econometric estimation of composed error frontiers is that one 

is required to make assumptions about the probability distribution of the error terms. Such 

assumptions of necessity are arbitrary and can lead to different conclusions about the 

technical efficiency of a firm. The second essay proposes estimation of a parametric 

stochastic frontier without the need for such assumptions.

A limitation of any parametric frontier (deterministic or statistical) is the subjective 

choice o f the functional form of the frontier. The method of Data Envelopment Analysis 

(DEA), introduced by Chames, Cooper and Rhodes (1978, 1981) and extended since then, 

leads to deterministic non-parametric frontiers. But the resulting technical inefficiency 

measures are point estimates without any statistical properties. This problem has recently 

been addressed with the use of bootstrapping. Simar (1992, 1996) and Simar and Wilson
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(1997a, 1997b) set the foundation for consistent use of bootstrapping. One problem with this 

approach is that it assumes that all the firms in the sample have the same probability of 

getting an observed technical efficiency level. But in reality, the firm’s relative efficiency 

may be systematically influenced by unit specific factors outside the firm’s control. The third 

essay in this dissertation develops a bootstrap procedure that generates the distribution of 

efficiency for each firm, conditional on unit specific factors.

This chapter provides a brief review of the relevant literature with a focus on the 

modeling of production frontiers and the measurement of technical efficiency. This review 

sets the foundation for the development of the essays. Section 1.2 traces the development of 

the deterministic parametric production frontiers, while section 1.3 deals with the 

development of stochastic parametric production frontiers. The basic Data Envelopment 

Analysis (DEA) models are presented in section 1.4. Section 1.5 introduces the basic 

mechanics of bootstrapping in general. Section 1.6 deals specifically with the existing 

techniques of the application of the bootstrap to DEA. The last two sections of this chapter 

explain the main contribution and organization of the rest of this dissertation.

1.2 Deterministic Parametric Frontiers

Consider a firm using k  inputs x=(xh to produce a single output y. Efficient

transformation of the input bundle x  into output is characterized by the production function f(x), 

which shows the maximum producible output from various input vectors. The production 

function is often characterized as a frontier, because it represents an upper limit of the quantity 

of output a firm can produce from a given bundle of inputs. For example, assume that the
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production function has the Cobb-Douglas form and inputs and output bundles are measured in 

natural logarithms. Then the specified regression model is:

where a  is the intercept, fh. fit} are the coefficients of the input vector, and v is the

error term that represents the random shocks. Neither the Ordinary Least Squares procedure 

nor econometric techniques like maximum likelihood estimation restrict the estimated output 

to be greater than or equal to the observed output levels. Thus, the estimated function is not a 

production frontier.

1.2.1 Deterministic non-statistical frontiers

Aigner and Chu (1968) develop a mathematical programming method for estimation 

of a parametric production function with a one-sided error term to ensure that the estimated 

production function will exceed the output level actually produced from a given bundle of 

inputs. They specify a Cobb-Douglas production frontier for a sample of n observations:

where the one sided error term u forces all the observed output levels to be on or beneath the 

frontier (y <f(x)). The technical inefficiency of each observation is equal to the exponential

o f the deviation from the frontier u (e“). The parameters or and  fii} are estimated

by m in im izin g  the sum of absolute values of the residuals, subject to the constraint that each 

residual should be non-positive (linear programming):

(LI)

k
y-i = f ( * i ) - U i  = a +  Y * P j x ij u i - °  fo r i =  1 ,2 ,...,n ,

j =l
(1.2)
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min £u j
i=l

k
st a  +  Xfjjx.j -  u; = yf ; i = 1,2,..., n .

j=l (1-3)

pj > 0; j  = U ,.. . ,k

Uj > 0 ; i = 1,2,..., n.

Alternatively the parameters are estimated by minimizing the sum of squared residuals, 

subject to the same constraint that each residual should be non-positive (quadratic 

programming):

" 2min
i=l

k
st a  +  XPjXij -  Uj  =  Y i ;  i = 1,2,..., n

j=l (1-4)

Pj > 0; j  = U ,... ,k

uj > 0; i = 1,2,...,n.

A problem with the Aigner and Chu approach is that the estimated frontier is 

deterministic (non-stochastic) and does not allow any stochastic noise to influence the 

frontier. As a result, any deviation from the frontier is treated as technical inefficiency. 

Another limitation of this mathematical programming approach, is that the estimated 

parameters have no statistical properties even though the input-output data set is only a 

sample from some underlying population. As an ad hoc adjustment for the possibility of 

statistical noise, Timmer (1971) extends the Aigner and Chu approach by allowing for an 

arbitrary percentage of observations to cross the frontier.
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1.2.2 Deterministic statistical frontiers

The non-statistical model in (1.2) can be made a deterministic statistical frontier by

making assumptions about the distribution of the one-sided error term u. Usually, researchers

assume that the one-sided error terms are independently and identically distributed (iid), and

that they are independent of the input vector x.

Afriat (1972) discusses the problem of estimating a deterministic parametric

production frontier using econometric techniques and suggests that the exponential of the

one-sided error term u, e“, should naturally take values between 0 and I because u >0 and

thus 0< eu< 1. He proposes a two-parameter beta distribution for e u and suggests that the

model should be estimated using the maximum likelihood method.

Richmond (1974) constructs the first econometric model of a frontier, where he

specifies the gamma distribution for the disturbance term u. Richmond suggests a method of

estimation, which is based on Ordinary Least Squares. The intercept of model (1.2) is

adjusted by the mean of the one-sided error terms, /r=E(u), in order to get a corrected error

term that is centered on zero.

k k
yi = ( a - p )  + XPjXy -(u j  - p ) = a *  + X P jxij +u*;

j=I j=l » (L 5 )

where p = E(u) fori = 1,2,...,n 

Note that the corrected error term u --(u -fj)  does not have the normal distribution. The 

transformed model, which is also called Modified OLS (MOLS), can be easily estimated by 

OLS to obtain consistent estimates of the parameters a  and fis .  For the gamma distribution,

the unbiased estimator of the variance of u (fry) coincides with the similar estimator of the
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0  ?
mean. Thus, a  + a „  is an estimator o f the intercept a. One problem with this approach is

that the correction to the intercept depends on the distribution assumed for u and the estimates 

of the technical efficiency may lead to different conclusions (Fersund, Lovell and Schmidt, 

1980). Moreover, the estimated frontier still allows some observed points to be above the 

fitted production function. Finally, the estimated model provides information only about the 

average efficiency o f the industry and not the individual efficiency. However, one can 

estimate production frontiers for sub-samples of data (e.g. different industries) and then 

compare their average efficiency levels.

Schmidt (1976) has shown that, i f  the one-sided error term u follows the exponential 

or the half-normal distribution, then Aigner and Chu’s linear and quadratic programming 

procedures are equivalent to maximum likelihood estimation. However, as Schmidt points 

out, the regularity conditions for consistency or asymptotic efficiency of the maximum 

likelihood estimators are violated for the exponential and half-normal cases.

Greene (1980a) provides us with the conditions that the density of the one-sided error 

term u must satisfy for the maximum likelihood estimators to have the desirable asymptotic 

properties. Additionally, he proposes a model based on the gamma density, which satisfies 

the derived conditions.

Greene (1980b) develops the corrected OLS estimators (COLS) for the deterministic 

frontier model. He proposes shifting the OLS-estimated intercept by the maximum error 

obtained from the OLS, max «,• {u„ i=\2-,...,n}. The resulting frontier is parallel to the OLS- 

estimated function and the estimated corrected intercept is consistent. Unlike Richmond’s
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MOLS frontier, the resulting frontier from COLS provides us with an estimated frontier 

where all the observed points lie on or below the frontier.

But, a common problem across all the deterministic production frontier methods is 

that they ignore the statistical disturbance due to randomness, specification errors and 

measurement errors. For the parametric frontiers, use of a composed error term takes into 

account this problem.

13 Stochastic Parametric Frontiers

Consider a model like model (1.1) where the production function f(x) is expressed in 

logarithmic terms and it provides us with the efficient transformation of the input vector .r 

into the maximal producible output

where v,- represents random shocks to the frontier. If the i-th firm was not be able to produce

(1.6)

y^i , but instead the observed y,- < y ^ , then the deviation from the frontier is due to technical

inefficiency. Let u, = y ^ -y , >0 denote the deviation from the frontier. Now the model in

(1.6) can be written as a stochastic production frontier

y, =yfi - “i =  f ( * i - P ) + vi -  ui ;
vj ~ i id N (0 ,o f )  anduj > 0  (u{ ~iid) for/ =  1,2,...,n,

(1.7)

or equivalently

y( = f ( x i;P) + s i ; £j = vj - Uj;

Vj ~iidN(0,Ov) anduj >0 (u; ~iid) fori = 1,2,...,n.
(1.8)
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The error term s o f  the above model is the sum of two independent components and is called 

a composed error term. The first component is a two-sided error term that represents the 

random shocks and it is identically and independently distributed with a normal probability 

density function. The second component represents the deviation from the frontier due to 

technical inefficiency and is one-sided. It is identically and independently distributed with a 

one-sided density function. The model in (1.8) for stochastic parametric frontiers is usually 

estimated with the maximum likelihood method and requires the researcher to make 

assumptions about the distribution of the one-sided error term.

Once the model is estimated the technical inefficiency is the ratio of the exponential 

of the deviation of the observed output from the expected maximal producible output.

Technical v_vj ^
. _  . =  TEi = ey' =-£— = —— — for* = 12  n .  (1.9)
inefficiency e f ( x>-̂ >JrV,

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broek (1977) 

simultaneously introduced stochastic parametric frontier modeling for cross sectional data. 

Both papers suggest the use of a composed error term s, such that, 

k
=a+ Y .f i jx ij + £i • £i - vi *ui 311(1 u t fori =1,2,...,n , (1.10)

y=i

where, as explained above, v, ~ iid N(0, oj 2) represents a two sided error term (noise) and «, 

is a one-sided error term which represents technical inefficiency and is independent from the 

noise.

Aigner, Lovell, and Schmidt (1977) specify for u, the half-normal distribution, i.e. the 

normal distribution truncated at zero (u,~ iid \N(0,a^z)\), and derive the maximum likelihood
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estimators. They also consider the exponential distribution as an alternative. ALS interpret 

the ratio of the standard errors o f the error terms, A=a^ /a ,  as an indicator of the relative 

variability of the two sources o f random error that firms experience. When either o f  

approaches zero or o f  becomes extremely large, then A2 approaches zero, which implies that 

the symmetric error dominates the determination of composed error and we should ignore the 

inefficiency term. Similarly, when either o f  approaches zero or o f  becomes extremely large, 

then A2 approaches infinity, which implies that the one-sided error becomes the dominant 

source of random variation in the model.

Meeusen and van den Broek (1977) present the model in (1.10) for the case where 

the one-sided term follows the exponential distribution and they also use maximum 

likelihood estimation.

Model (1.10) with the composed error term can be estimated under alternative 

assumptions for the one-sided error term with the use o f the maximum likelihood method. 

Stevenson (1980) argues that the zero mean assumptions for the half-normal density of the 

one-sided error term is restrictive and he proposes the normal distribution with non-zero 

mean truncated at zero (ut~N(/4 cf); u{20). However, Greene (1993) shows that the log- 

likelihood is ill behaved for unrestricted //  and that the assumption of non-zero //  

considerably inflates the standard error of the other parameters. The gamma distribution for 

the one-sided error term satisfies the regularity conditions for the asymptotic properties and it 

was introduced by Greene (1980a), Stevenson (1980) and extended by Greene (1990).

Olson, Schmidt and Waldman (1980) discuss the method of moments approach for 

the case that the density of the one-sided error term is specified as half normal, Harris (1992)
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assumes that the truncated normal density, and Greene (1993, 1995) specifies the exponential 

and gamma densities. A frequent problem with the method of moments is the third central 

moment might be negative. Olson, Schmidt and Waldman (1980) show that the method of 

moments is better than the maximum likelihood when A is less than 3.16, but Coelli (1995) 

with another Monte Carlo study found that Maximum Likelihood Estimation outperforms the 

method of moments for large A.1

1.3.1 Measuring technical inefficiency

The maximum likelihood procedure provides estimates for the composed error term, 

si, but without a decomposition of si into separate estimates of the one-sided error term «,• and 

the two-sided v,- a measure for the technical inefficiency can not be obtained.

Jondrow, Materov, Lovell, and Schmidt (JMLS, 1982) derive the conditional 

distribution u|^when the one-sided error term, has the half-normal or exponential density 

and they suggest the estimation of the mean or mode of u\s for a measure o f the error term 

that represents technical inefficiency. They show that for the half normal case, the density of 

the conditional error term is truncated normal N(p, &r).

However, later Battese and Coelli (1988) show that when the production frontier is 

estimated in logarithmic terms, as in (1.10), the appropriate measure of technical inefficiency

is not exp(-E(u\s)) as Jondrow, Materov, Lovell, and Schmidt suggest, but E(e~u \ s ) .

1 As an alternative to more traditional econometric estimation techniques like the maximum 
likelihood method or the method of moments for the estimation of model (1.10), van den 
Broeck et al. (1992) and Koop et al. (1992) suggest the Bayesian approach.
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Greene (1993) shows that the mean of die conditional distribution, E(u\£), enables unbiased 

but not consistent estimation of u, because the variance of the estimate doesn't converge to 

zero.

Horrace and Schmidt (199S, 1996) derive the upper and lower bounds of u \sand the

exponential e~u \ s  under the assumption that the error term representing technical 

inefficiency follows the half-normal distribution. Bera and Sharma (1996) and Hjalmaron, 

Kumbhakar and Hesmati (1996) obtain the confidence intervals for E(u\e), and Bera and

Sharma (1996) obtain the confidence intervals for E(e~u \ e ) .

13.2 Panel Data

Pitt and Lee (1981) generalize the stochastic production frontier in (1.8) for panel

data:

y-a = f ( xit) + £it ■ £it = vu -  «it ■' v it ~ N(0’ ) and u it > 0
for/ = l^  n andt  = lA-...T (1-H)

They estimate three variations of model (1.11). First, they assume that the one-sided error 

term representing technical inefficiency is time invariant («,,= «,• for t=L,2,.. .T). Their second 

variation allows the one-sided error terms to be identically and independently distributed over 

time. Finally, the third variation relaxes the assumption of independence and allows the one

sided error terms to be correlated across time but to be identically and independently 

distributed across firms. Also, no correlation is allowed between the error terms and inputs. 

From their first model one can derive only the average technical efficiency of the firm over 

the time-period studied. The second model assumes independence of the one-sided error term
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across time and it does not provide any information about changes in a firm’s inefficiency 

during the time-period of the sample. Finally, their third model can not provide a measure of 

the technical inefficiency, since it can not be decomposed from the composed error term.

Schmidt and Sickles (1984) provide a variety of estimates for the model in (1.11) for 

panel data under the assumption that the one-sided error term uit is time invariant and varies 

only across firms:

y i t  =  f ( x i t )  +  £ it'  £it ~ v it ~  u it •

vit~N(Q,a *) and uit = ut > 0 (1-12)
for i = 12 n and t = 12 ,—. T.

They show how their model can be estimated without any assumptions about the distribution

of the error terms f) using OLS like the Corrected OLS in Richmond (1974), it) as a fixed

effects model (Within estimator), iii) as a random effects model with the effects uncorrelated

with the regressors (Generalized Least Squares estimator), and iv) as a random effects model

with the effects correlated with some of the regressors (Hausman-Taylor estimator). Also,

they suggest the maximum likelihood estimators given independence between the error terms

and distributional assumptions (MLE estimator). Finally they provide a number of tests to

compare alternative assumptions and models and to help one select the appropriate estimator.

Battese and Coelli (1988) present a generalization of some of the results presented by 

Jondrow et al. (1982), under the assumption that panel data on sample firms are available. 

Their model is similar to the Schmidt and Sickles (1984) model. However, they use a 

truncated normal distribution with a non-zero mean, as proposed by Stevenson (1980), for the
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technical inefficiency component Battese and Coelli argue that for the logarithmic 

production function, an appropriate measure of technical efficiency for firm i is

of technical efficiency is unbiased but inconsistent

Reifschneider and Stevenson (1991) and Huang and Liu (1994) model the frontier 

inefficiency error component as a time-invariant function of various casual firm specific 

factors, Z,-, and a random component to test whether some proportion of the frontier 

departures can be systematically explained.

However, the one-sided error term, w„ which is the unexplained component of the 

inefficiency error, is treated as time invariant. They apply their model assuming that the 

density of w, follows either the truncated normal or the gamma distribution.

The Schmidt and Sickles (1984), Battese and Coelli (1988), Reifschneider and 

Stevenson (1991), and Huang and Liu (1994) models for panel data restrict the one-sided 

error term to be time-invariant Thus, only the average technical inefficiency across firms 

over time can be estimated and there is no information how it is changing over time. 

Subsequent researchers have allowed the technical inefficiency to vary over time, but they all 

model efficiency as a systematic function o f time:

(1.13)

rather than e as in Jondrow et al (1982). Further, for panel data the above estimate

«/ = g (Z t ) + wf for i = 1,2,..ji , (1-14)
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yu = f (  xn ) + £u ; £u = vu -  Uu -
vit~N (0,ay) anduit = g(t)> 0  (115)

fo r /= 1,2 n and t = \,2,...,T.

Kumbhakar (1990) and Cornwell, Schmidt and Sickles (1990) were the first to propose time- 

varying inefficiency. Battese and Coelli (1992, 1995), Lee and Schmidt (1993), Ahn, Lee and 

Schmidt (1994), Kumbhakar and Hesmati (1993) and Hesmati and Kumbhakar (1994) 

propose alternative models for panel data with time varying technical efficiency.2 3

1.4 Data Envelopment Analysis (DEA)

The main limitation of any parametric production function (econometric or non- 

statistical) is that the researcher specifies an explicit, and in some cases, quite restrictive, 

functional form for the technology (Bauer 1990, Greene 1993). Another disadvantage is that 

transformation of multiple-inputs to multiple-outputs can be handled only in a dual cost or 

profit function, but this requires the further assumption of cost or profit optimizing behavior 

respectively. Data Envelopment Analysis (DEA) provides an alternative framework for the 

estimation of a deterministic non-parametric frontier involving multiple inputs and outputs 

and is based only on the hypotheses of monotonicity, convexity, and free disposability of 

inputs and outputs. The DEA procedure was developed by Chames, Cooper and Rhodes 

(1978, 1981) (CCR) with focus on computing relative efficiency o f different decision making

2 Ahn, Lee and Schmidt (1994) estimate the Lees and Schmidt model with the method of 
moments as opposed to maximum likelihood in the Lee and Schmidt article.

3 Battese and Coelli (1995) offer a generalization of Battese and Coelli (1992) and 
Reifschneider and Stevenson (1991) by modeling the one-sided error term as function of 
firm specific characteristics, zu: uu = zitS  + wit, wu ~ N(0, cf) fo r  wit > - zitS.
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units (DMUs). The basic CCR model was limited to constant-retums to scale technologies, 

but was extended later by Banker, Chames and Cooper (1984) (BCC) to allow variable- 

retums-to-scale. Here we provide a brief outline of the DEA procedure.

Consider an industry producing a vector of m outputs, y=(yi, yz, —.y j ,  from a vector 

of k  inputs, x=(xt, x2, .... X / J .  Let the vectors jc1 andy represent, respectively, the input and 

output bundles of the i-th firm or decision making unit (DMU). Suppose that the input-output 

data are observed for n DMUs. Then the technology set can be completely characterized by 

the production possibility set:

T ={ (x,y): y  can be produced from x}. (1-16)

The technology is assumed to have the following properties:

Pi. All observed input-output bundles are feasible.

(x‘, y )  e  T; for every i=I,2 n (117)

P2. T exhibits free disposability with respect to inputs.

(x°, y°) e  T and x ' >x => (x1, y°) e  T (1-18)

P3. T exhibits free disposability with respect to outputs.

(x°, y°) e  T a n d / <y° => (x°, y') e  T (1.19)

P4. T  is convex

(x°, y )  e  Tand (x‘, y l) )e T = >  (Ax°+(l-A)x‘, Ay°+(l-A.)y‘) e  T; 0<A<1 (120)

The free disposal convex hull of the observed input-output bundles is the smallest 

technology set satisfying assumptions Pi to P4 (Varian, 1984). For variable returns to scale 

(VRS), it can be written as:
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s  = [ ( x ,y ) : x > Y .^ iX l ;y ^ ' Z ^ y 1 ’ H^i  = h ^ i  > 0;i = l,2,...,n] (121)
/'=! /= !  /= !

S  is an inner approximation of the true technology set. If we assume constant returns to scale

(CRS), i.e. all radial expansions as well as (non-negative) contractions of feasible input-

output combinations are also feasible, then the technology set is the corresponding free

disposal conical hull of the observed points. It can be written as:

S* = [ ( x . y ) : x > Z ^ i X l ; y  ^ £ 4 / ;  4  > 0 ;i =l,2,...,n] (122)
i=l 1=1

Following Farrell (1957), the input-oriented technical efficiency o f the j-th DMU 

under the assumption of Constant Returns to Scale (CRS) can be obtained as 

TE=naa{ &(Qii,y/) eS} .The input-oriented technical efficiency of the j-th firm under the CRS 

can be computed by solving the following linear programming (LP) problem: 

m in^ j

s j . Z  ^  y { : for t = 1,2,..., m
i=l (123)
Z ^ x 's  ^ Ojxi :  fors = l,2,...,k
/=i

> 0  for i = l,2,...,n.

This is the primal form of the Chames, Cooper, and Rhodes (CCR, 1978) model. 

Banker, Chames and Cooper (BCC, 1984) extend this model to the case of Variable Returns 

to Scale (VRS) for which we solve problem (129) with an additional constraint on the A, s. 

The input-oriented technical efficiency of the j-th firm under the VRS can be computed by 

solving the following linear programming (LP) problem:
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m in#j

SJ. X  ̂ y [  ^  y { : for t = 1X - ,  m  
1=1
n
Y *ixs ^  &jx i  fors = 1,2,..., k (1.24)
/=!

X 4 =  l;
/=!
/i, >0 for i = l,2,...,n.

Similarly, the output-oriented technical efficiency of the j-th firm under CRS and

VRS can be computed by solving the linear programming (LP) problems in (1.25) and (1.26)

respectively:

max

sJ. Y ^ y ' t ^  0 jy {  > for t =  1,2,..., m
,=l (1.25)
n
Y ^ i x s — x i  > fors = l,2,...,k
i=i

/i, > 0  for i = l,2 ,...,n

and

max^j

sJ. Y  ̂ y [  -  <f>jyi > for t = 1X —, m 
i = i

Y ^ i xs ^ x i> fors = l,2 ,...,k  (1.26)
i=i

1 4  = i;
i=i
>2, > 0  for i =  l,2 ,...,n.
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Following the earliest models, a large number of extensions o f the CCR model have 

been developed, e.g. the free disposal hull model (Deprins, Simar and Tulkens, 1984), cone 

ratio model (Chames, Cooper, Huang and Sun, 1990), and the assurance region model 

(Thompson, Langermeier, Lee, Lee and Thrall, 1990). One of the advantages of the DEA. 

models over the parametric approach is that they can handle multiple-input multiple-output 

production. However, the main advantage is that no explicit functional form of the 

production frontier is required. On the downside, its greatest limitation is that the calculated 

frontier is deterministic and does not accommodate statistical noise in the data.

Several alternative procedures to estimate non-parametric statistical production 

frontiers are currently available in the literature. DEA was extended to the case of stochastic 

inputs and outputs through the use of chance-constrained programming (Land, Lovell and 

Thore, 1988, 1993; Olesen and Petersen 1989, 1995). Banker and Maindiratta (1992) (BM) 

developed a method to obtain maximum likelihood estimates of a monotone and concave 

non-parametric production frontier with a composed error term. More recently, Sarath and 

Maindiratta (1997) proved the consistency of the BM estimators. Banker (1993) showed that 

in the case of a single-output technology, DEA gives a consistent estimate of the production 

frontier. He laid the foundation of asymptotic properties of DEA estimators and also 

constructed an F-test to compare differences in inefficiency distributions across groups of 

DMUs. As yet another alternative, resampling methods like bootstrap and jackknife have 

been used to derive the distribution of the DEA efficiency estimators. Recently Simar (1992, 

1996), Simar and Wilson (1997a, 1997b) set the foundation for consistent use of bootstrap 

techniques to generate empirical distributions of efficiency scores and have developed tests of 

hypotheses relating to returns to scale.
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The last essay of this dissertation, which is presented in chapter 4, deals with the 

development o f a consistent bootstrap technique. The next section describes the bootstrap 

methodology in general. It can be applied in variety of contexts including one in chapter 3 of 

this dissertation. Section 1.6 includes a summary of the existing bootstrapping techniques as 

they have been applied in DEA.

1.5 Bootstrap

The idea of the bootstrap was first introduced by Efron (1979), who proposed the use 

of computer-based simulations to obtain the sampling properties of random variables. The 

starting point o f any bootstrap procedure is a sample of observed data X={x,. x* ...^xj drawn 

randomly from some population with an unknown probability distribution f  The basic 

assumption behind the bootstrap method is that the random sample actually drawn “mimics” 

its parent population.

1.5.1 Naive Bootstrap Methodology

Suppose that a sample of observed data X={xh x2,....x„} is drawn randomly from 

some population with an unknown probability distribution f  The sample statistic 

0 = 0(X) computed from this state of observed values is merely an estimate of the 

corresponding population parameter 0 = 0 (f) . When it is not possible to analytically derive 

the sampling distribution of that statistic, one examines its empirical density function. 

Unfortunately, however, the researcher has access to only one sample rather than multiple 

samples drawn from the same population. As noted above the basic assumption behind the
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bootstrap method is that the random sample actually drawn “mimics” its parent population. 

Therefore, if one draws a random sample with replacement from the observed values in the 

original sample, it can be treated like a sample drawn from the underlying population itself. 

Repeated samples with replacement yield different values of the sample statistic under 

investigation and the associated empirical distribution (over these samples) can provide the 

sampling distribution of this statistic. For reasons explained later this is known as a naive 

bootstrap.

The bootstrap sample X*={x,*. x2*....,xH*} is an unordered collection of n items

drawn randomly from the original sample X  with replacement, so that any x,* (i=l,2 rt) has

1/n probability of being equal to any x, Q -l,2 .....n). Some observations from the original

sample X  will appear zero times in the bootstrap sample, while other observations will appear

more than one time. Let f  denote the empirical density function of the observed sample X  

from which X* was drawn. Then it can take the form:

f(t) = {l /n  lf  t = x i>l = l’2’—n ( l 27)
[0 otherwise

If f  is a consistent estimator of f  then the bootstrap distributions will mimic the

original unknown sampling distributions o f the estimators that we are interested in. Let

O' = 0 ( X ') be the estimated parameter from the bootstrap sample X*. Then the distribution 

of 0* around 0 in f is the same as of 0 around 0 inf .  That is:

(0 * -  0) | f  ~ (0 -  0) | f  . (1.28)
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Since every time that we replicate the bootstrap sample we get a different sample X*, 

we will also get a different estimate of 9’ -  9 {X ’) .  Thus we need to select a large number of 

bootstrap samples, B, in order to extract as many combinations of xj (j=l,2, as possible. 

The bootstrap algorithm has the following steps:

i) Compute the statistic 9 = 9(X) from the observed sample X.

ii) Select b-th (b=l,2,...,B) independent bootstrap sample Xb*, which consists of n data 

values drawn with replacement from the observed sample X.

iii) Compute the statistic 9* = 9 (X \ ) from die b-th bootstrap sampleXb*.

iv) Repeat steps (ii)-(iii) a large number of times (say B  times).

v) Calculate the average of the bootstrap estimates o f 9  as the arithmetic mean

= (1-29)

A measure of the accuracy for the estimator 9  as an estimate o f 9  is the bias, which 

is defined as the difference between the expectation of 9  and 9.

biasf =biasf(0,9) = E f (0 )-0 . (1.30)

If the bias is a positive number, then the estimator overestimates the true parameter.

If the bias is a negative number, then the estimator underestimates the true parameter. An

unbiased estimator will have zero bias, i.e. Ef (0) = 0 . One can use the estimate of bias to 

bias-correct the estimator, so it becomes less biased. The bias-corrected estimator is

Ĝ c = 0 -b ia s f .  (131)
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Similarly, we can estimate the bias o f the bootstrap estimator 0 ^ ,  (b = 1,2,..., B) as an

estimate of 0 ,  biasj. = E^G^) - 0 .  We approximate the expectation of each bootstrap

estimator 0& by the average of the bootstrap estimators 0* ( • ) . Now the estimated bias of the 

bootstrap estimator based on B replications is

biasB = 0 * ( - ) -0 .  (1.32)

Taking biasB as an estimate for the unknown biasF, the bias-corrected estimator of 0

is

0bc = <9-biasB = 2 0 -0 * 0 )-  (1-33)

Notice that if 0* (■) is greater than 0 , then the bias-corrected estimate 0bc should be less 

than 0 .  This is the case because we are using the relationship between 0* (■) and 0 to

mimic the relationship between 0  and 0.

Efron and Tibshirani (1993) point out that bias correction can be problematic in some 

situations. Even if 0\c is less biased than 0 , it might have substantial by greater standard 

error due to high variability in biasB. The standard error of 0 (■) is measured as

seB = se(0*)=  U — £ ( 0 Z  - 0 * 0 ) )2 - (1-34)
V 6=1

Correcting for the bias may result in a larger root mean squared error. If biasB is 

small compared to the estimated standard error of 0*(■) , then it is safer to use 0 than 0bc- 

As a rule of thumb Efron and Tibshirani (1993) suggest the computation of the ratio of the
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estimated bootstrap bias to standard error, biass/se^ If the bias is less than .25 standard 

errors, then it can be ignored.

Finally, we can obtain the bias-corrected estimator from each bootstrap 

&bjbc»(h = 1,2,..., B ). We want the corrected empirical density function of 6%, (b = 1,2,..., B)

to be centered on 0bc, the bias-corrected estimate of 0, i.e. E(0[,jH;) = 0bc,(b = l,2,...,B). 

According to this, the bias-corrected estimate from each bootstrap will be

- 2 bias*, (b = 1,2,...,B ). (1.35)

If  we have corrected by only 1 *biasB, then we would have centered the empirical distribution

of 0l,Qo = 1,2,...,B) on 0  instead of 0bc. The correction by l*biasB will be appropriate for

the case where the biasB is small compared to the estimated standard error of 0 (■) , i.e. the 

bias-corrected estimate from each bootstrap should be

&bj)c = &b -bias5 , (b = l,2,...,B). (1.36)

Once we have the bias-corrected estimates we can use the percentile method to

construct the ( l-2a)% confidence intervals for 0as

(0bca)’K c ~ a))’ (b = lA-..,B), d-37)

where 0^.°* is the (lOO^a*) percentile of the empirical density of 0bj,c, (b = 1,2,..., B ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

One major drawback o f the bootstrap procedure outlined is that even when sampling 

with replacement, a bootstrap sample will not include observations from the parent 

population that were not drawn in the initial sample. The shape of the empirical distribution

f has jumps at the observed points and it looks like a collection of boxes of width h, a small 

number, centered at the observations and zero anywhere else. Thus, the bootstrap samples are 

effectively drawn from a discrete population and they fail to reflect the fact that the 

underlying population density function/is continuous. Hence, the empirical distribution from 

the bootstrap samples as they were drawn in this section is an inconsistent estimator of the 

population density function. This is why it is known as a naive bootstrap.

1.5.2 Smooth Bootstrap methodology

One way to overcome this problem is to use kernel estimators as weight functions.

The empirical distribution f will take the form:

f(t) = - L £ K ( ' i ^ i- '|, (1.38)
nh i=[ v h

where h is the window width or smoothing parameters for the density function. K(.) is a 

kernel function, which satisfies the condition

[K(x)<fc = l .  (1.39)
—03

Usually AT is a symmetric probability density function like the normal density 

function. If we use the standard normal density function as the Kernel density function, then 

the smoothing is called Gaussian smoothing. The empirical density function then can be 

written as
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(1.40)

Here ft.) is the standard density function.

By virtue of the convolution theorem (Efron and Tibshirani, 1993) we can generate 

the smoothed bootstrap sampleX**={x,**, x2**, as

where x ’ is from the naive bootstrap sample in the previous section.

Sometimes it is the case that the natural domain of the definition of the density 

function to be estimated is not the whole real line but an interval bounded on one side or both

zero for all negative x. One possible way to solve the above problem is to calculate f(x) 

ignoring the boundary restrictions and then to set the empirical density function equal to zero 

for values of x  that are out of the boundary domain. A drawback of this approach is that the 

estimates of the empirical density function will no longer integrate to unity.

Silverman (1986) suggests the use of the negative reflection technique to handle such 

problems. Suppose that we are interested in values of x  such that x>a. If the resulting value 

from the bootstrap is x ''< a , then we will reflect the x,**, such that 2a-x'~>a. The empirical 

density function will be:

Xi“ = x,* + h ^ v ~ f ;  i=I,2 n, (1-41)

sides. For example we might be interested in obtaining density estimates f  for which f(x) is

(1.42)
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Again by the convolution theorem we can generate the smoothed bootstrap sample 

X**={x,** x2**....*„**} as

x* + hs, ~ - 5 - Y . d — T 1-)  if  x* + he, > a
nh ,=i 1 h ,

' 1 v '  (1.43)
otherwisef * u \ 1 £  J ‘ - 2 a  + x i y2 a - ( x t + h s i )  r lL

nh l=[ ^ h

where x ‘ is from the naive bootstrap sample in the previous section.

Choice of the smoothing parameter (ft) is crucial to the estimated empirical density 

function. Following Silverman (1986) we can select the value o f the window width that 

minimizes the approximate mean integrated square error. This leads to 

h = 0.9 A n " 5.

where A = min ('standard deviation of X, interquartile range of X/1.34),
(1.44)

The bootstrap algorithm can be re-written as following:

i) Compute the statistic 0 = 6{X) from the observed sample X.

ii) Select b-th (b=l,2 B) independent naive bootstrap sample Xb*={xl%b‘.x^t,',...,x^b'},

which consists of n data values drawn with replacement from the observed sample X.

iii) Construct the smoothed bootstrap sample Xb**= {X[,b**,X2.b*"> • • • ,Xn,b” }, from the naive 

bootstrap sample according to (1.47) or (1.49).

iv) Compute the statistic 0* = 0{X*b ) from the b-th bootstrap sample Xb*.

v) Repeat steps (ii)-(iii) a large number of times (say B times).

vi) Calculate the average of the bootstrap estimates of 6  as the arithmetic mean
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We can now calculate the bias, bias-corrected estimates and construct confidence 

intervals following the same steps described in section 1.5.1.

1.6 DEA and Bootstrap

Recently Simar (1992, 1996), Simar and Wilson (1997a, 1997b) set the foundation 

for the consistent use of bootstrap techniques to generate empirical distributions of efficiency 

scores and have developed tests of hypotheses relating to returns to scale of bootstrapping. 

Following Simar and Wilson (1997a) we can describe the existing bootstrap techniques for 

the output-oriented technical efficiency measure given in (1.32) with the following algorithm:

i) Solve (1.32) to obtain for each DMU j=l,2,...,n.

ii) Select the b-th (b= l,2 ,...3 ) independent naive bootstrap sample {tpt,b ,<fhb  <f>n.b },

which consists of n data values drawn with replacement from the estimated values

iii) Construct the smoothed bootstrap sample {&i.b ’,02.b" ......</>.<&'}< from the naive

bootstrap sample. Notice that all the $  s are greater than or equal to 1. Therefore, the 

smoothed bootstrap sample should be appropriately bounded. It will be computed 

according to:
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^ . + h e j  i f  $ j + h e f >1
J , y J ; forj = l,2 ,...,n . (1.46)

2 - ( 0 j  + h c j )  otherwise

As before, h is the optimal width that minimizes the approximate mean integrated 

square error of s distribution. 

h = 0.9 A n " 5.
(1-47)

where A = min (standard deviation of ̂  interquartile range of tffl.34)

iv) Create the b-th pseudo-data set as {(x*\ yj*= y j  <f>j!</>** ); j=l,2, . . .^i}.

v) Use the pseudo-data set to compute new s from the linear program described in

(1-32).

vi) Repeat steps (iiMiv) B-times to obtain { ;  b=l,2,...,B} for each DMU j ,  

j-l,2,...,n.

vii) Calculate the average of the bootstrap estimates of <j> s, the bias and the confidence 

intervals as they are described in the previous section.

A problem with the existing bootstrap techniques is that they assume that all DMUs 

have the same probability of drawing a specific efficiency score. This may not be true when 

unit-specific factors systematically influence the efficiency level of the DMU but cannot be 

included in the DEA model. The third essay in this dissertation develops a bootstrap procedure 

that generates the distribution of efficiency for each individual DMU conditional on unit 

specific factors.
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1.7 Main contributions of the dissertation

As discussed in the previous sections, traditional econometric estimation techniques 

fail to measure a production frontier, because they allow the observed output bundle 

produced by a given set of inputs to be greater than the estimated maximal producible output. 

The first and the second essay deal with the estimation of parametric production frontiers 

while the third essay deals with a non-parametric production frontier. While the first essay 

uses econometric techniques to estimate a statistical frontier from the beginning, the last two 

essays first estimate non-statistical production frontiers and then develop a framework to 

obtain statistical estimates. Each essay contributes to the literature on estimation of statistical 

production frontiers and technical efficiency using alternative techniques.

The first essay of the three in the dissertation constructs a model specifying the 

efficiency change through firm-specific intercepts that evolve over time as a first order auto

regressive process. Apart from allowing efficiency in one period to be influenced by past 

levels of efficiency, this approach separates efficiency from technical change.

The second essay returns to the Aigner and Chu (1968) approach of modeling a 

deterministic frontier using mathematical programming, but estimates a parametric 

production function with a composed error term instead of a one-sided error term. The 

individual levels o f technical efficiency can be estimated without any distributional 

assumptions about the statistical distribution of the error terms. But this mathematical 

programming approach yields only point estimates for the parameters of interest In order to 

overcome this problem, bootstrapping techniques are employed and confidence intervals for 

our parameters are constructed.
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A criticism for any parametric frontier estimation is the subjective choice of the 

functional form of the frontier. The proposed alternative, Data Envelopment Analysis, 

provides point estimates o f the relative technical efficiency of a firm. Bootstrapping has been 

used to generate the distribution of the technical efficiency. A problem with the existing 

approach is that it assumes that all the firms in the sample have the same probability to get an 

observed technical efficiency level, while the firm’s relative efficiency position might be 

systematically influenced by unit specific factors out of the firms control. The third essay in 

this dissertation develops a bootstrap procedure that generates the distribution of efficiency 

for each firm, conditional on unit specific factors.

1.8 Organization of the dissertation

The main body of this dissertation is contained in Chapters 2 to 4. The first essay, 

Chapter 2, relates to the econometric estimation of production frontiers for panel data and 

modeling of technical efficiency and technical change. The second essay, Chapter 3, develops 

a methodology for the estimation of a statistical production frontier using mathematical 

programming and bootstrapping techniques. The last essay, Chapter 4, estimates a non- 

parametric frontier using Data Envelopment Analysis and bootstrapping. Each essay includes 

a methodological extension and an empirical application. Finally, Chapter 5 contains a 

summary of the main findings of the dissertation.
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C h a p t e r  2: Fr o n t ie r  p r o d u c t io n  f u n c t io n  Mo d e l s  w it h

AUTOREGRESSIVELY TIME-VARYING EFFICIENCY

2.1 Introduction

Econometric estimation of production frontiers started with deterministic production 

frontiers (Richmond, 1974; Greene, 1980) and was later extended to stochastic production 

frontiers in a pair of seminal papers by Aigner, Lovell and Schmidt (1977) and Meeusen and 

van den Broeck (1977). The basic model for the estimation of a stochastic parametric 

production function includes a composed error term, which is the sum of an exogenous 

shock represented by a two-sided error term and technical efficiency represented by a one

sided error term. Subsequently, Jondrow, Materov, Lovell and Schmidt (1982) and Battese 

and Coelli (1988) showed how individual efficiency levels can be measured from such a 

model.

At the initial stage of development of the stochastic production frontier, the specified 

models were limited to cross sectional data. Pitt and Lee (1981), Schmidt and Sickles (1984), 

Reifschneider and Stevenson (1991) and Huang and Liu (1994) provided applications using 

panel data. However, their models treated technical efficiency as time invariant. Subsequent 

researchers have allowed the technical efficiency of a firm to vary over time, but they model 

efficiency as a systematic function of time (Kumbhakar 1990; Cornell, Schmidt and Sickles, 

1990; Battese and Coelli, 1992, 1995; Lee and Schmidt, 1993; Kumbhakar and Hesmati, 

1993; Hesmati and Kumbhakar, 1994). The problem with this approach is that, in most 

econometric models using time series data, technical change is also specified as an explicit

32
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function of time. As a result, one can not distinguish between technical change and 

efficiency change in these models.

This chapter constructs a model specifying efficiency change through firm-specific 

intercepts that evolve over time as a first order auto-regressive process (AR(1)). This is 

consistent with the belief that people learn from mistakes gradually. This approach builds on 

the Cooley-Prescott (1973a, 1973b) adaptive regression model within the class of regression 

models with time-varying parameters. Apart from allowing efficiency in one period to be 

influenced by past levels of efficiency, the developed model separates technical efficiency 

from technical change.

This essay is organized as follows. The adaptive regression model is presented in 

section 2.2.1 and in section 2.2.2 we set up our specific model. Section 2.3 contains several 

sub-sections that explain how the model will be estimated, define the likelihood function, 

derive the first order conditions and the information matrix for a maximum likelihood 

function, and finally describe how technical efficiency at individual data points can be 

measured from the estimated model. An empirical application is provided in section 2.4. 

Section 2.5 contains a summary of the contributions o f the second chapter.

2.2 Frontier Production Function Model with Autoregressively Time-Varying 

Efficiency

In this paper we take an alternative approach to model technical efficiency for panel 

data and conceptualize change in technical efficiency of a firm as a first order autoregressive
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(AR(1)) process. This builds on the Cooley-Prescott adaptive regression model, which is one 

form of regression model with time-varying parameters.

2.2.1. Adaptive Regression Models

The Cooley-Prescott adaptive regression model can be specified as:

y t =at + /k t +vt ; v~iidN (0,o^),

a t = at_\ +ut ; u ~ iid N(0, er^J for t = 1,2,..., T.

The error terms v, and u, in the above model are assumed to be independently distributed for 

all t and s (Cooley and Prescott, 1973). The term adaptive regression is due to the fact that 

the residual in (2.1) is the sum of a random walk, a ,  and an independent error, v,.1 The major 

advantage of the Cooley and Prescott model is that the change in the constant term takes into 

account structural changes and thereby obtains better forecasts.2

Rosenberg (1973) considered a model similar to that of Cooley and Prescott. Instead 

of making the coefficients f i  a random walk, he specified a stochastically convergent 

parameter structure. The Rosenberg model applied on the intercept changes becomes:

y t =at +flct +vt ; v~ iid N (0,0*),
(22)

a t = ( \ - A ) a  + +ut ; u ~ iid N (0 ,er^)  fort = 12 ,—,T.

1 They also allow the coefficient parameter fito  vary in a similar manner like the intercept in 
(2.1) and they call this model the varying-parameter regression model.

2 Maddala (1982) argues that the adaptive regression model captures the effect of omitted 
variables.
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Both models can be estimated by generalized least squares or maximum likelihood 

procedures after deriving the covariance matrix of the residual.

2.2.2. The Model with Autoregressively Varying Efficiency

Consider a panel data set from n firms observed over T periods. Let yu and xu 

represent respectively the scalar output level and the input vector o f k  inputs for firm i at 

time t. The production function is specified as:

where vu is the error term that represents random shocks, ^ i s  the vector of k parameters for 

the input vector. Finally, au is the firm specific intercept that evolves over time as an 

autoregressive (AR(1)) process:

uu is the error term that it is due to technical inefficiency.

Since the technical inefficiency is introduced into the model through the intercept 

and not as a deterministic function of time, we can include time as one of the explanatory 

variables in the vector xu. This allows us to distinguish between technical change and 

efficiency change.

If the i-th firm is 100% efficient at time t, then uu will be equal to zero. The firm’s 

intercept at time t, ati, depends on last period’s intercept and takes the maximum value:

Notice that the firm need not have been frilly efficienct at time t and its intercept for the 

previous period does not have to be at its maximum level. I f  the firm is 100% efficient at all

yit = a it + x itp + v it, (2.3)

a it = a t + M , - i  + uit; u i t < 0 . (2.4)

(2-5)
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points in time, then all the error terms uit for firm i will be zero and the intercept at any point 

of time will evolve as:

100  . i 100 n
a it ~ a i +<Pa iTt - l  • (2 -6 )

The maximum long run intercept for the efficient firm will be:

£ « * !» ) = A : '  (2.7)
i —*p

If the i-th firm is inefficient at time t, then u„ is less than zero and the firm’s

intercept at time t, au, is going to be less than its maximum value. The long run intercept for

firm i will be:

E(ait) = lx = E(uit) < 0 .  (2.8)
1 — <t>

As shown in equation (1.9), the technical inefficiency o f firm i at time t is the ratio 

of the exponential of the deviation of the observed output, yto from the expected maximal 

producible output, y/, i.e.:

TE.t = e yi.-yf, = e “it. (2.9)

We can introduce into the model other variables, zu that can influence the position of 

the intercept by specifying

a it =<Xi +<|>aitt_1 + zity + uit; u it £ 0 , (2.10)
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where y is the vector o f coefficients that correspond to variables zu. The long run 

intercept for firm firm i will be:

For our application we specify time as the explanatory variable r,„ in order to capture 

technical change. This feature allows both technical change and technical efficiency to 

influence the position of the intercept, while we obtain measures for both.

Returning to the model described by equations (2.3) and (2.10), we can rewrite the 

model in the following simplified form:

y it = “ i + <t*yi,t-i + xitp -  <i> x ^ p + zity + £jt
with eit =(vjt — <|>Vjt_i +Ujt )

The composed error term, eu, of this model is the sum of an MA(1) process and a one-sided 

error term.

23 Estimation of the model

Consider a random variable ujt -  NfO.a^) and u* =max{ujt} is the maximum

value of a sample (Ujj,Ui2>—, 5 ^ ) for firm i drawn from this distribution. Then we can 

define:

; n  = E(uit)< 0 .

y it + <j>yi,t-i + xjt0  -  <|> x i<t_lp + zity + (vit - K t . ,  + u it). (2 . 11)

or
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“ it = “ it -  S.* = “ it ~ max{uit }<0 . (2.13a)

Thus,

a it = 5 j + + zity + uit, uit ~ N (Q ,erl)  (2.13b)

Now the model with equations (2.3) and (2.13) can be written as:

y it = 5 ;  +q>yi,t-l + x itP-«l>x i,t- tP+Z itY  +  ( v it + 5 it)-  (2.14)

or

yit = 5 « + ( l>yi,t-i + x k P - ' t > x i , t - iP + Z i t r + &it

where e* = (v it -< K t-l + u it)
(2.15)

After we obtain consistent estimates for the parameters of the above model, we can 

apply the Greene correction method to calculate the corrected intercept and the one-sided 

error terms (Greene, 1980). The Greene correction will result in the estimation of a 

consistent but biased estimate of the frontier intercept and the corrected intercept, and the

one-sided residuals will be given by:

*  ̂ * * 
a,  =6tj +Uj = cc.j +max{ujt} and

„ - ‘ - (2.16) 
u it = u it - U j  = u it -m ax{uit}^0

t

We can consistently estimate the model in (2.15) using Maximum Likelihood 

Estimation Method, as it is described in the next paragraph. Then we can obtain estimates for 

the intercept and the one-sided error term using (2.16). The technical efficiency will be given 

by:
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23.1 Maximum Likelihood Estimation

If we assume that uit ~ N (0,au2) and vu ~ N  (O.of) are mutually uncorrelated 

orthogonal processes, then Êt can be written as

Also, Sjt being the sum of an MA(1) and a white noise process would be an MA(1) process.

E(eiJ) = (l + <j>2 )c^ = (l + 02)a*

E (%  ̂ i t - i ) =  v =  w (2 2 0 )
H(eiteit_s ) = 0 fo rs>2

Hence the variance-covariance matrix of the vector with the composed error terms for firm z, 

Ej ={£11, ^ 2 ,— will be:

%  = ( v it -< K t- l  + “ «)• (2-18)

(2.19)

where wu~ N  (0, <yj) is the underlying white noise.

Now the variance and covariance of the composed error term eu will be:

(l + 0 2)o* -0<Tw o

- 0<*w 
- 0<Tw (l + 02)<Jw

(231)

0 0
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i + e 2 - 0 0
- e 1 + 0 2 . . .  *

• i - 0
0 0 - 0  1 + 0 2

where Q =

Each vector s t — { s ii.£ i2.—rs iT} f°r i=l,2,...,n follows the multivariate normal 

distribution 84 ~ iid N(0,E). Thus, the probability density function (p.d.f.) of ej will be

(2re)T/2 |E |
(222 )

Since the error vectors sj s are independent across firms, the p.d.f. of the vector 

(e ,,e 2 will be

1

f ( e„ e2’" ',e n > (2n )nT/2 | Z |n/2

1A -  .v-l~ 
1 1 
 e 1"1 (223)

Now the likelihoodfunction can be found by substituting the ejt s with

Sit =yit - « i  +<(»yi,t-i + x itP'H>xi,t_lP'
for every i = l,2 ,...,n  and t = l,2 ,...,T .

(224)

The Log Likelihood Function becomes:

taL(3) = - — bi(2 jt)-— ln(a2 ) - ln ( |Q |)  l—
2 2 2 2a 2 i=l

where 3 = ( 5 i a n, f t p k,y , y s ,<fr,6 ,ct2 )’

(2.25)
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where a  = ( a 1, a 2, . . . ,a n) is the vector with the firm specific coefficients. The solution of

the first order conditions yields estimates of the parameters & = (a ,P ,^ ,0 ,d ^ ) . The 

information matrix permits us to derive the asymptotic standard errors o f the estimates.

23.2 First Order Conditions

The First Order Conditions can be summarized as:

51nL
5Sj

= 1  e j ' O ' 1- p - = £j 'Q_1i = 0,  for j=13,..2 .  .  a w •=« 2 
J55; a

(2.26)

where i is a Txl vector of ones i= [l,l,.

51nL 1 dz\ c . _ ,   — — — L = 0 , forp=l,2,...,k,
^P p  CJ“  i=I 3pp

(237)

where 55j
x ilp ^ iO p  

x i2p — 4>xilp

x iTp — ^ i .T - l .p

51nL 1 " ~ , = ---- — Q — — = 0 , for q=l,2,...,s. (238)

where 5ej

&fa

z ilq

z i2q

z iTq _
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= — L f ; e i -S-1^ -  = 0 ,
0<|> a 2 i=l dty

where S . —
at>

YiO-XioP
yn -* n P  

y>,T-l -*i,T-lP

01n L n   i 0Ci 1 JL _i dQ „ - i~  „ =  trace(Q — ) + — — X ^  Q — Q *& =0
50 2 00 2a l  i=i 00

(229)

(2.30)

01nL nT
0a  i

1 n _ _i__
+ 7 7 T T I e i ,«  l£ i= 0

2a  w 2(aw) i—I
(2.31)

From the last o f these First Order Conditions (2.31) we get

-) 1 n |

nT i=i
(2.32)

which is similar to the weighted sum of Squared Error divided by the number of observations 

in our sample.

One can use a nonlinear procedure like the Newton-Raphson procedure to solve the 

system of first order conditions to obtain the Maximum Likelihood Estimators.

2 3 3  Second O rder Conditions and the Information Matrix

The second order direct and cross partial derivatives of the likelihood function are:

02 InL 
0ajdam

— i’CI i < 0 if j = m ~_2 , for j,m =l,2,...,n
if j * m
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g2 InL 
gajgpp

g2 InL 
dajdrq

d2 InL 
ga.jg$

d2 InL 
gajg8

g2 InL 
gajga^

g2 InL 
gppgpr

g2 InL 
5Pp5/q

g2 InL 
gPpgifr

where

g2 InL 
SPpgG

^6*
= for j=I»2,— and p=l,2,...,k
o l  3Pp

=— i’f i — for j= l,2,...,n  and q = U ,- ,s  
a 2 5yq

1 i 5e;
— i’f l 1— , for j= 1 ^ ,...ji
<TW2 g*

— i - e in " 1 — ft-M, for j=l,2,...,n 
a 2 1 56

l y E j n '* i , for j=l,2,...,n; at the optimal point 8 lnL
( a i r  gttjgcr

— if p = r 
o w i=i5pp gpp , forp,r= l,2,...,k

1 £ ̂ — Y — Lfl — L i f p * r
a 2 ,tl5pr 5p_

= — fo rp =  U ,...4candq= U ,...,s  
a i  i=i 5yq gpp

=  forp=U,-.-4c
CT2 i=i 5<|> aPp cr2 i=i 5ppa^

d2gjt
gppa*

fo rp= U ,...Jc
a 2 i=i ‘ 56 app
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a 2 InL
appao2

a 2 InL 
dyqdyh

a 2 InL 
d]rqa$

a2 InL
ayqae '

a 2 InL 
airqaff2

a 2 InL 
d$2

a 2 InL 
a<t>ae

a 2 InL 
d^dol

a 2 InL
ae2

— -—  y  e ,n _l , for p=l,2,.. ,,k; at the optimal point 8 = 0
( o i ) 2 t ,  app appao2w

 L _ £ ^ L n - « B _ < 0  if q = h
Ow i=l^fq ^/q ? forq,h = 1,2,...,s

CTw i=l a/h ayq

— forq=l,2, . . . , s 
ujf i=i a$ ayq

- L ^ g j - a - 1—  forq=l,2,...,s
a 2 it, ae ayq

= — I— for q=l,2,...,s; at the optimal point 8 111 = o
(cTw)2 >=1 ayqa c w

 1
a 2 i=l d$ a«j»

al i,l 59 5*

a 2 InL— - E s j ' Q  at the optimal point
(a2 )2 i=i W

-» _  I

2 =  °

■ ^ m i q i  i  ■ a - , a n x r l -  i £ - ,Q - , a f n ^ , . .
2 a e2 2 o 2 i=i ae ae 2<r2 i=i a e 2

-tra c e C -Q -1 —  Q "1— + 2 0 " ')  £  ej'C T 1 — Q " 1 +
2 ae ae a 2 i=i ae ae CT:
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* *U , . . 32 In L n ,„ - i  dQat the optimal point — = ------— trace(£2  )
dQdal 2cri 30

32 InL nT £  Ej ’f l 1 Ej; at the optimal point
5 ( a 2 ) 2 2 ( a 2 ) 2 2(cr2 ) 3 i=l

32 InL 

d(a2 )2
nT

2(cTw)2
< 0

At the optimal point, the resulting Hessian matrix with direct and cross second 

partial derivatives of the Iog-likelihood function has to be negative definite for a maximum. 

These second partials are used to derive the information matrix for the asymptotic variance 

and covariance standard error of the Maximum Likelihood Estimators 0:

Var(9) = - a 2 InL 
3059'

-l
, where 9 = ( a ! a n , P j p k ,yx ys,<j>, 0,ctw )’

-lS=S

2_3.4 Individual Measures of Technical Efficiency

Based on the previous assumptions, the conditional distribution of uit | Ejt is

Sit I ><**)>

L ct2 j  2 (l + <l>2)a'vcru ' 2̂>33^where (J.lt = ------------  -E jt and a .  = ------- -— -— ± -
(1 + <|> )ct2 +<tu (1 -+* <j) )ctv + a u

Following Battese and Coelli (1988) the technical efficiency will be given by
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— 2
TEit = E(eUit | % ) = E(eUit | &jt ) e « <Uftl = exp((i*t + ̂ —  max{uit}). (2.34)

Detailed derivation of the above results is presented in Appendix H.

2.4 Empirical Application

The data used in the empirical application are from the Annual Census of 

Manufacturing for the period 1953-83, and relate to 12 selected states of India. Table 2.1 lists 

the states included in our sample. Output is measured by total value added in manufacturing. 

The two inputs included are labor (L) and capital (K). Labor is measured by persons employed 

while capital is measured by book value of fixed assets. Nominal valued added has been 

deflated by the manufactured goods price index. Similarly, book value of fixed capital has been 

deflated by the price index of machinery and transport equipment. Further, the Census data are 

state level aggregates. These have been divided by appropriate numbers of establishments 

covered to measure output and input quantities per establishment in each state. Over this 

period, reorganization of states has led to several redefinitions of geographical boundaries. As a 

result, what we have is an unbalanced panel. Only those states for which data are available for 

all years have been included. The two exceptions are Maharashtra and Tamilnadu. Data for 

Bombay have been treated as earlier observations of the time series for Maharashtra, even 

though the two states are not coterminous. Additionally, time was included as an explanatory
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variable in the intercept equation to capture the technical change. The model with a Cobb-

Douglas production function is

ln(Yit) = a it + pL ln(Lit) + |3K ln(Kit) + vit ^
a it = a 4 + <t»ccj t_j + yTimet + u it; u it ̂  0.

If we define

yit=ln(Ylt),
lit =ln(Lit), and (2.36)

kjt =ln(Kit)

then the estimated model becomes

yit = ttj  +<l>yi,t-i +  PL1it + PKkit -4 » p L l i,t-i -^ P K k i.t- iP '+ y T im et + s it 

where Sjt = ( v it — 4>v it-i +  S it )>
ujt = Ujt -  max{uit} < 0 , (2.37)

t
cij =6ti + max{uit }. 

t

First we estimate a Cobb-Douglas production function using Ordinary least squares, 

and the results are presented in Table 2.2. The elasticity of output with respect to Labor is 

74.45% and the elasticity with respect of Capital is 24.39%. We used Ordinary Least Squares 

estimates of parameters as the initial values for the estimation of the model in (2.32). Use of 

the Newton-Raphson optimization method led to the estimates reported in Table 2.3. We find 

that the elasticity of Labor is 0.81 and the elasticity of Capital is 0.29. The coefficient o f time 

that captures the technological change is 0.001. We apply the Greene correction by adding 

the maximum of the estimated error for each firm to the estimated firm specific intercept. 

We appropriately adjust the error terms and we use (2.16) to estimate the technical efficiency
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across firms and time. As we can see from the results the state of MP has the higher intercept 

and thus its frontier lies higher than the other states. The estimates of the technical efficiency 

are reported in Table 2.4. The overall technical efficiency for the 12 states of our sample 

during the period 1954-1983 is 86.23%. When a state has efficiency equal to 1, this implies 

that this state was 100% efficient at that point of time. Technical Efficiency values less than 

1 imply that the state was inefficient From the state average Technical Efficiency we can see 

that the state of Bihar has 93.15% efficiency over the period that we study and it is the state 

in our sample that is closest to its frontier. Notice that the frontier of the state of Bihar is 

ranked fifth relative to the other states. The state of MP that has the highest located frontier 

intercept is ranked last in terms of Technical Efficiency with only 65.91% efficiency.

2.5 Conclusion

Frontier production function models with time varying technical efficiency typically 

model a firm’s efficiency level as a systematic function of time. As a result, one can not 

distinguish between technical change and changes in the level of efficiency. In this paper, we 

model efficiency change through unit-specific intercepts that evolve over time like a first order 

auto regressive (AR(1)) process. This builds on the Cooley-Prescott adaptive regression 

model within the class of regression models with time-varying parameters. The current 

approach has two major advantages. The first is that it allows past levels of inefficiency to 

influence the current position of the firm’s frontier though the intercept. The second 

advantage is that it is possible to estimate both the technical change and efficiency change.
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Table 2.1: List of Indian States

State Number

Assam 1

Bihar 2

Delhi 3

Himachal Pradesh 4

Madhya Pradesh 5

Orissa 6

Punjab 7

Rajasthan 8

Uttar Pradesh 9

West Bengal 10

Andhra Pradesh 11

Maharashtra 12
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Table 2.2: Regression results

Variable Parameter Estimate Standard Error T statistic for 9=0

Assam a i -2.58885 0.41176 -6.287

Bihar <X2 -2.29305 0.45486 -5.041

Delhi CC3 -2.40706 0.42257 -5.696

Himachal Pradesh cu -2.38347 0.33000 -7.223

Madhya Pradesh as -2.62344 0.44192 -5.936

Orissa 06 -2.52943 0.40089 -6.31

Punjab 07 -2.52923 0.42629 -5.933

Rajasthan as -2.63343 0.41627 -6.326

Uttar Pradesh 09 -2.63640 0.47900 -5.504

West Bengal Oio -2.42462 0.51483 -4.71

Andhra Pradesh Oil -2.81939 0.46600 -6.05

Maharashtra ai2 -2.09154 0.51431 -4.067

ln(Labor) (3l 0.74451 0.06485 11.48

ln(Capital) Pk 0.24387 0.04683 5.208

time Y 0.00978 0.00349 2.803

adjusted R2 = 0.9991
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T able 2 3 :  M axim um  Likelihood E stim ates

Firm Specific 

Intercepts

Parameter

Estimate
max{uit}

t

d ; = 5 ; +

max{Urt}
t

Standard

Error t-statistic

Relative 

Rank of 

the 

intercepts

Assam Cti -2.29607 0.24074 -2.05533 0.33067 -6.21560 3

Bihar <X2 -2.14388 0.07818 -2.06570 0.41974 -4.92140 5

Delhi Ctj -2.17649 0.11753 -2.05896 0.36746 -5.60329 4

Himachal Pradesh cu -2.14404 0.13284 -2.01121 0.33468 -6.00934 2

Madhya Pradesh as -1.95888 0.44879 -1.51010 0.25991 -5.81003 I

Orissa 06 -2.33023 0.17227 -2.15796 0.35251 -6.12170 7

Punjab a.7 -2.23765 0.16137 -2.07628 0.32143 -6.45944 6

Rajasthan cu -2.25180 0.07957 -2.17223 0.34096 -6.37101 8

Uttar Pradesh CL9 -2.28736 0.09276 -2.19460 0.33215 -6.60731 9

West Bengal a to -2.38909 0.13021 -2.25888 0.38235 -5.90786 11

Andhra Pradesh a u -2.31304 0.07439 -2.23865 0.41399 -5.40743 10

Maharashtra an -2.44249 0.12783 -2.31466 0.36920 -6.26947 12

Varia- Param eter Standard t-statistic

ble Estimate E rro r

In(Labor) Pl 0.81026 0.07869 10.29692

ln(Capital) Pk 0.29442 0.05176 5.68866
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time r 0.00133 0.00027 4.76320

4> 0.38465 0.02611 14.73107

e 0.26655 0.05444 4.89651

2CT. 0.04774 0.00341 14.01577

<T»* 0.03308

2CTu 0.01315
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Table 2.4: Technical Efficiency

State

\

Y ear 1 2 3 4 5 6 7 8 9 10 11 12 States

1955 0.801 0.904 0.971 0.900 0.669 0.812 0.903 0.917 0.953 0.884 0.949 0.882 0.879

1956 0.874 0.962 0.995 1.000 0.655 0.887 0.951 0.990 0.951 0.929 0.969 1.000 0.930

1957 0.821 0.888 0.977 0.943 0.723 0.901 0.857 0.962 0.761 0.867 0.934 0.846 0.873

1958 0.801 0.875 0.928 0.931 0.843 0.814 0.841 0.950 0.863 0.885 0.932 0.858 0.877

1959 0.808 0.919 0.879 0.928 0.793 0.801 0.856 1.000 0.909 0.879 0.971 0.905 0.887

1960 1.000 0.937 0.939 0.970 1.000 0.807 1.000 0.913 0.850 0.891 0.948 0.826 0.924

1961 0.821 0.912 0.835 0.931 0.634 0.884 0.824 0.917 0.910 0.904 0.917 0.846 0.861

1962 0.903 0.923 0.873 0.941 0.825 0.884 0.962 0.953 0.948 0.881 0.914 0.891 0.908

1963 0.801 0.937 0.923 0.894 0.303 0.574 0.705 0.917 0.917 0.873 0.929 0.835 0.801

1964 0.774 0.926 0.880 0.848 0.616 0.840 0.888 0.984 0.908 0.849 0.930 0.832 0.856

1965 0.757 0.911 0.911 0.879 0.579 0.794 0.841 0.863 0.834 0.883 0.924 0.835 0.834

1966 0.712 0.921 0.876 0.872 0.487 0.774 0.888 0.908 0.882 0.901 0.897 0.844 0.830

1967 0.819 0.908 0.889 0.827 0.546 0.788 0.733 0.903 0.854 0.832 0.864 0.822 0.815

1968 0.702 0.894 0.804 0.809 0.496 0.765 0.652 0.883 0.908 0.764 0.856 0.776 0.776

1969 0.645 0.899 0.856 0.750 0.789 0.859 0.864 0.930 0.895 0.952 0.886 0.773 0.841

1970 0.776 0.943 0.851 0.922 0.579 0.779 0.788 0.917 0.893 0.918 0.885 0.878 0.844

1971 0.792 0.950 0.869 0.845 0.718 0.848 0.872 0.906 0.927 0.862 0.896 0.866 0.863

1972 0.732 0.955 0.863 0.867 0.649 0.828 0.779 0.947 0.933 0.824 0.921 0.876 0.848

Average

TE

across
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1974 0.867 1.000 0.891 0.834 0.486 1.000 0.963 0.896 0.951 0.939 0.989 0.969 0.899

1975 0.899 0.998 1.000 0.893 0.526 0.949 0.883 0.966 1.000 0.902 1.000 0.913 0.911

1976 0.830 0.942 0.893 0.782 0.697 0.834 0.824 0.947 0.941 0.850 0.936 0.930 0.867

1977 0.866 0.937 0.821 0.871 0.684 0.908 0.953 0.855 0.935 0.872 0.934 0.890 0.877

1978 0.860 0.950 0.774 0.856 0.700 0.855 0.840 0.936 0.945 0.793 0.919 0.872 0.858

1979 0.775 0.949 0.838 0.846 0.657 0.819 0.900 0.887 0.966 0.824 0.927 0.869 0.855

1980 0.782 0.936 0.804 0.832 0.701 0.863 0.915 0.907 0.973 0.814 0.920 0.861 0.859

1981 0.694 0.954 0.767 0.831 0.682 0.919 0.791 0.936 0.941 0.803 0.945 0.875 0.845

1982 0.764 0.938 0.961 0.842 0.706 0.921 0.821 0.874 0.913 1.000 0.903 0.873 0.876

1983 0.753 0.912 0.951 0.831 0.714 0.889 0.764 0.851 0.862 0.843 0.902 0.942 0.851

State Average TE

State Overall

# 1 2 3 4 5 6 7 8 9 10 11 12 Average

0.801 0.931 0.886 0.874 0.659 0.843 0.852 0.922 0.912 0.872 0.925 0.871 0.862

rank 11 1 5 6 12 10 9 3 4 7 2 8
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Table 2.5: Data

State Year Labor Capital Value Added

Andhra Pradesh 1954 39430 2890.31 930.75

Assam 1954 6687 694.7 262.73

Bihar 1954 111021 17575.87 7841.14

Delhi 1954 24393 1725.78 1354.38

Himachal Pradesh 1954 765 135.28 20.37

Madhya Pradesh 1954 52234 3979.89 1458.25

Maharashtra 1954 540880 42685.56 25608.96

Orissa 1954 16152 1919.56 706.72

Punjab 1954 27183 2559.41 977.6

Rajasthan 1954 13751 2129.8 409.37

Uttar Pradesh 1954 170560 12228.52 5753.56

West Bengal 1954 452353 30127.97 16468.43

Andhra Pradesh 1955 41365 3394.11 1095.83

Assam 1955 6877 740.33 247.92

Bihar 1955 111207 17688.77 8618.75

Delhi 1955 26286 1941.07 1314.58

Himachal Pradesh 1955 710 127.07 31.25

Madhya Pradesh 1955 51150 4186 1477.08

Maharashtra 1955 538223 43438.31 27414.58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

Orissa 1955 16443 1797.42 758.33

Punjab 1955 27905 2937.38 1047.92

Rajasthan 1955 15459 2174.95 589.58

Uttar Pradesh 1955 172859 13462.25 6068.75

West Bengal 1955 465357 31473.3 19441.67

Andhra Pradesh 1956 42373 3401.08 1582.96

Assam 1956 8270 751.8 347.53

Bihar 1956 116455 20266.19 10280.27

Delhi 1956 28019 2109.71 1766.82

Himachal Pradesh 1956 727 116.91 35.87

Madhya Pradesh 1956 52306 4007.19 1867.71

Maharashtra 1956 551236 42197.84 33318.39

Orissa 1956 16266 1991.01 910.31

Punjab 1956 28888 3253.6 1352.02

Rajasthan 1956 16530 2258.99 695.07

Uttar Pradesh 1956 170057 16640.29 7260.09

West Bengal 1956 487753 33868.71 22903.59

Andhra Pradesh 1957 68910 6622.57 2148.68

Assam 1957 8632 832.45 340.12

Bihar 1957 122951 22467.37 10981.67

Delhi 1957 30621 2313.93 1832.99

Himachal Pradesh 1957 807 118.17 52.95
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Madhya Pradesh 1957 20239 1516.75 739.31

Maharashtra 1957 626822 53601.41 34883.91

Orissa 1957 17493 2153.44 810.59

Punjab 1957 39394 4243.39 1890.02

Rajasthan 1957 25653 2862.43 631.36

Uttar Pradesh 1957 181980 17772.49 6930.75

West Bengal 1957 494600 38481.48 22855.4

Andhra Pradesh 1958 70300 7032.48 2066.28

Assam 1958 7895 837.61 288.5

Bihar 1958 125587 25897.44 10214.42

Delhi 1958 31593 2567.52 1836.26

Himachal Pradesh 1958 898 135.04 99.42

Madhya Pradesh 1958 58605 5885.47 2128.65

Maharashtra 1958 591319 56162.39 30931.77

Orissa 1958 19641 2552.14 828.46

Punjab 1958 40579 4418.8 1902.53

Rajasthan 1958 24798 2796.58 686.16

Uttar Pradesh 1958 186525 18164.1 7161.79

West Bengal 1958 476769 38452.99 21643.27

Andhra Pradesh 1959 65348 7284.99 2192.31

Assam 1959 6658 713.32 236.54

Bihar 1959 125582 35263.07 9300
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Delhi 1959 32462 2762.23 1867.31

Himachal Pradesh 1959 995 138.28 113.46

Madhya Pradesh 1959 37360 4406.41 1207.69

Maharashtra 1959 559589 56765.6 32496.15

Orissa 1959 19366 3055.65 861.54

Punjab 1959 41974 5268.13 2321.15

Rajasthan 1959 21022 2738.62 711.54

Uttar Pradesh 1959 172448 16457 6430.77

West Bengal 1959 478630 40994.94 24317.31

Andhra Pradesh 1960 137000 9475.41 3580.71

Assam 1960 69000 11065.57 6011.13

Bihar I960 174000 40360.66 13896.1

Delhi I960 40000 3147.54 2541.74

Himachal Pradesh 1960 1000 229.51 241.19

Madhya Pradesh I960 87000 5196.72 2448.98

Maharashtra 1960 607000 67393.44 39814.47

Orissa I960 20000 6213.11 1614.1

Punjab 1960 69000 6754.1 3116.88

Rajasthan I960 43000 3377.05 1224.49

Uttar Pradesh I960 231000 19016.39 8775.51

West Bengal I960 662000 60836.07 34805.19

Andhra Pradesh 1961 143000 12539.43 3982.91
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Assam 1961 68000 10488.96 4376.07

Bihar 1961 166000 40283.91 10341.88

Delhi 1961 40000 3028.39 2358.97

Himachal Pradesh 1961 2000 236.59 170.94

Madhya Pradesh 1961 86000 9100.95 3572.65

Maharashtra 1961 626000 74763.41 40735.04

Orissa 1961 26000 6577.29 1452.99

Punjab 1961 68000 6324.92 2854.7

Rajasthan 1961 44000 3895.9 1487.18

Uttar Pradesh 1961 231000 21167.19 9521.37

West Bengal 1961 665000 68643.53 33008.55

Andhra Pradesh 1962 142000 13139.36 4561.98

Assam 1962 61000 10076.57 4512.4

Bihar 1962 176000 41638.59 11107.44

Delhi 1962 42000 3935.68 2661.16

Himachal Pradesh 1962 2000 229.71 231.4

Madhya Pradesh 1962 102000 10903.52 4710.74

Maharashtra 1962 650000 82266.46 44033.06

Orissa 1962 25000 8897.4 2000

Punjab 1962 76000 11332.31 4000

Rajasthan 1962 44000 3889.74 1735.54

Uttar Pradesh 1962 252000 25666.16 10347.11
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West Bengal 1962 679000 79540.58 33619.83

Andhra Pradesh 1963 156000 14375 4513.56

Assam 1963 67000 13997.09 4178.63

Bihar 1963 186000 42136.63 13492.82

Delhi 1963 45000 4505.81 2583.73

Himachal Pradesh 1963 3000 305.23 31.9

Madhya Pradesh 1963 137000 45566.86 3189.79

Maharashtra 1963 674000 94375 49377.99

Orissa 1963 53000 40247.09 2902.71

Punjab 1963 86000 13197.67 4322.17

Rajasthan 1963 49000 5101.74 2009.57

Uttar Pradesh 1963 255000 25261.63 9984.05

West Bengal 1963 729000 109941.9 40191.39

Andhra Pradesh 1964 172000 27175.14 5587.79

Assam 1964 69000 13474.58 3526.72

Bihar 1964 196000 47175.14 13679.39

Delhi 1964 58000 9180.79 3267.18

Himachal Pradesh 1964 2000 169.49 45.8

Madhya Pradesh 1964 133000 51341.81 5618.32

Maharashtra 1964 691000 110423.7 52152.67

Orissa 1964 51000 42401.13 3938.93

Punjab 1964 95000 15466.1 5725.19
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Rajasthan 1964 54000 6920.9 2305.34

Uttar Pradesh 1964 270000 44872.88 11389.31

West Bengal 1964 794000 123107.3 45251.91

Andhra Pradesh 1965 209000 27844.47 6541.24

Assam 1965 76000 16221.01 3560.06

Bihar 1965 202000 5040928 15238.78

Delhi 1965 64000 9290.59 3632.42

Himachal Pradesh 1965 3000 450.2 101.3

Madhya Pradesh 1965 155000 59918.14 7163.53

Maharashtra 1965 755000 124665.8 55615.05

Orissa 1965 62000 43956.34 4602.03

Punjab 1965 134000 35852.66 7395.08

Rajasthan 1965 65000 14065.48 2633.86

Uttar Pradesh 1965 276000 51991.81 12952.24

West Bengal 1965 825000 138704 47814.76

Andhra Pradesh 1966 218000 29987.08 7083.91

Assam 1966 77000 18372.09 3053.65

Bihar 1966 212000 71085.27 16327.37

Delhi 1966 65000 10206.72 3741.4

Himachal Pradesh 1966 5000 762.27 123.8

Madhya Pradesh 1966 146000 68397.93 6850.07

Maharashtra 1966 767000 135762.3 58500.69
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Orissa 1966 71000 47441.86 6011

Punjab 1966 139000 45219.64 8363.14

Rajasthan 1966 70000 15710.59 3053.65

Uttar Pradesh 1966 296000 63617.57 15749.66

West Bengal 1966 880000 161240.3 48762.04

Andhra Pradesh 1967 223000 41093.56 7487.62

Assam 1967 77000 19696.23 4108.91

Bihar 1967 211000 74835.97 16670.79

Delhi 1967 67000 10789.79 3403.47

Himachal Pradesh 1967 8000 1324.42 247.52

Madhya Pradesh 1967 156000 76852.98 7722.77

Maharashtra 1967 751000 151701.1 57710.4

Orissa 1967 72000 49951.4 4009.9

Punjab 1967 83000 32029.16 4962.87

Rajasthan 1967 72000 18201.7 3081.68

Uttar Pradesh 1967 284000 74009.72 13452.97

West Bengal 1967 864000 171518.8 43254.95

Andhra Pradesh 1968 225000 48605.99 6721.13

Assam 1968 74000 17453.92 2897.6

Bihar 1968 214000 84251.15 13616.56

Delhi 1968 69000 10426.27 3104.58

Himachal Pradesh 1968 9000 1152.07 217.86
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Madhya Pradesh 1968 163000 77004.61 7527.23

Maharashtra 1968 746000 154804.2 54880.17

Orissa 1968 67000 54354.84 2450.98

Punjab 1968 72000 21866.36 3736.38

Rajasthan 1968 69000 20841.01 3540.31

Uttar Pradesh 1968 267000 77292.63 9814.81

West Bengal 1968 822000 167477 38529.41

Andhra Pradesh 1969 232000 52923.78 6584.05

Assam 1969 71000 18452.79 2068.97

Bihar 1969 216000 74254.84 14084.05

Delhi 1969 83000 19124 3426.72

Himachal Pradesh 1969 9000 1547.21 711.21

Madhya Pradesh 1969 167000 75460.75 10010.78

Maharashtra 1969 787000 172707.6 59008.62

Orissa 19 69 74000 55233.22 4547.41

Punjab 1969 78000 25130.83 4644.4

Rajasthan 1969 70000 27303.75 3933.19

Uttar Pradesh 1969 272000 86075.09 16077.59

West Bengal 1969 754000 148111.5 36907.33

Andhra Pradesh 1970 265000 58193.04 10115.18

Assam 1970 75000 23793.49 3287.96

Bihar 1970 226000 85914.7 15445.03
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Delhi 1970 74000 13187.43 4314.14

Himachal Pradesh 1970 11000 2300.79 659.69

Madhya Pradesh 1970 169000 1212121 8680.63

Maharashtra 1970 811000 192873.2 70471.2

Orissa 1970 85000 52783.39 4900.52

Punjab 1970 78000 28204.26 4837.7

Rajasthan 1970 77000 29842.87 4376.96

Uttar Pradesh 1970 288000 101358 19193.72

West Bengal 1970 770000 166071.8 39623.04

Andhra Pradesh 1971 265000 57407.79 10901.72

Assam 1971 74000 24928.28 3961.5

Bihar 1971 235000 85788.93 16899.7

Delhi 1971 78000 13084.02 4265.45

Himachal Pradesh 1971 14000 2592.21 1246.2

Madhya Pradesh 1971 173000 67418.03 10151.98

Maharashtra 1971 836000 201280.7 78176.29

Orissa 1971 78000 49651.64 5744.68

Punjab 1971 84000 29774.59 5096.25

Rajasthan 1971 87000 32827.87 5460.99

Uttar Pradesh 1971 317000 115594.3 19037.49

West Bengal 1971 770000 150215.2 40091.19

Andhra Pradesh 1972 283000 58854.67 12296.37
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Assam 1972 79000 24427.33 3660.45

Bihar 1972 246000 89499.52 17860.65

Delhi 1972 85000 9181.91 4308.15

Himachal Pradesh 1972 16000 4302.21 1462.22

Madhya Pradesh 1972 182000 64773.82 10500.49

Maharashtra 1972 899000 2045332 8672228

Orissa 1972 82000 46997.11 4877.33

Punjab 1972 92000 32406.16 6221.79

Rajasthan 1972 93000 35640.04 6241.41

Uttar Pradesh 1972 340000 121838.3 17419.04

West Bengal 1972 801000 152945.1 45338.57

Andhra Pradesh 1974 291000 58657.6 16632.56

Assam 1974 78000 23305.01 523721

Bihar 1974 236000 88105.35 18725.58

Delhi 1974 83000 17621.07 4734.88

Himachal Pradesh 1974 21000 4876.81 883.72

Madhya Pradesh 1974 203000 79056.92 19618.6

Maharashtra 1974 929000 227102.8 1049302

Orissa 1974 86000 44052.68 7906.98

Punjab 1974 97000 39328.8 6241.86

Rajasthan 1974 99000 35063.72 7013.95

Uttar Pradesh 1974 356000 135794.4 24446.51
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West Bengal 1974 797000 125616 52911.63

Andhra Pradesh 1975 327000 57883.31 17463.71

Assam 1975 98000 22042.06 7876.24

Bihar 1975 267000 82876.53 28120.7

Delhi 1975 75000 15976.93 4896.87

Himachal Pradesh 1975 20000 2455.9 634.07

Madhya Pradesh 1975 212000 73378.56 20954.93

Maharashtra 1975 969000 205909.1 110748.7

Orissa 1975 85000 47333.79 7708.17

Punjab 1975 102000 39857.53 7608.86

Rajasthan 1975 98000 35739.48 8174.18

Uttar Pradesh 1975 414000 127401.6 27249.81

West Bengal 1975 771000 110685.2 55477.46

Andhra Pradesh 1976 349000 56441.07 18873.7

Assam 1976 98000 21015.17 6959.64

Bihar 1976 307000 137666.3 31230.47

Delhi 1976 83000 19002.33 4244.79

Himachal Pradesh 1976 16000 3395.57 1139.32

Madhya Pradesh 1976 236000 78868.14 17272.14

Maharashtra 1976 947000 179620.8 92057.29

Orissa 1976 92000 34492.42 6217.45

Punjab 1976 106000 41901.98 8053.39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

Rajasthan 1976 114000 46691.95 9127.6

Uttar Pradesh 1976 442000 120408.4 24375

West Bengal 1976 813000 110525.1 51276.04

Andhra Pradesh 1977 377000 63341.11 18876.4

Assam 1977 101000 23300.29 7865.17

Bihar 1977 309000 153586 24701.36

Delhi 1977 89000 22320.7 5552.93

Himachal Pradesh 1977 18000 5673.47 1803.67

Madhya Pradesh 1977 233000 88413.99 19520.99

Maharashtra 1977 993000 214658.9 94991.13

Orissa 1977 95000 42769.68 9130.69

Punjab 1977 127000 50979.59 7687.76

Rajasthan 1977 124000 45871.72 9243.05

Uttar Pradesh 1977 508000 140793 28799.53

West Bengal 1977 789000 119562.7 48710.82

Andhra Pradesh 1978 399000 75967.37 19091.92

Assam 1978 112000 32162 9487.47

Bihar 1978 333000 161299.5 20729.81

Delhi 1978 86000 22954.55 5559.89

Himachal Pradesh 1978 17000 6008.16 2022.28

Madhya Pradesh 1978 236000 96381.12 18055.71

Maharashtra 1978 1001000 239155 99966.57
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Orissa 1978 99000 46497.67 7894.15

Punjab 1978 134000 59213.29 9565.46

Rajasthan 1978 123000 51800.7 9587.74

Uttar Pradesh 1978 561000 157237.8 25576.6

West Bengal 1978 845000 122039.6 48740.95

Andhra Pradesh 1979 431000 86266.74 20241.74

Assam 1979 111000 31679.69 7252.1

Bihar 1979 326000 207288 24341.39

Delhi 1979 91000 22633.93 5688.21

Himachal Pradesh 1979 18000 8989.96 2146.03

Madhya Pradesh 1979 245000 100128.4 16196.35

Maharashtra 1979 1044000 258616.1 106013.8

Orissa 1979 97000 49023.44 8697.58

Punjab 1979 158000 64224.33 10315.74

Rajasthan 1979 125000 57963.17 10666.01

Uttar Pradesh 1979 554000 171104.9 26147.02

West Bengal 1979 834000 131668.5 49309.32

Andhra Pradesh 1980 467000 94203.82 21350.74

Assam 1980 109000 25654.09 6235.93

Bihar 1980 310000 218980.9 22336.79

Delhi 1980 95000 27138.66 5925.26

Himachal Pradesh 1980 20000 9632.53 2701.49
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Madhya Pradesh 1980 255000 107809.9 18469.16

Maharashtra 1980 1076000 277672.7 107483.1

Orissa 1980 100000 50465.46 9725.35

Punjab 1980 181000 76834.88 12449.35

Rajasthan 1980 150000 60744.73 13075.19

Uttar Pradesh 1980 609000 167800.1 27294.01

West Bengal 1980 867000 130842.7 49991

Andhra Pradesh 1981 448000 96246.7 21376.66

Assam 1981 107000 23828.19 4335.19

Bihar 1981 347000 186590.3 20226.59

Delhi 1981 95000 26185.02 5746.05

Himachal Pradesh 1981 19000 9290.75 2513.89

Madhya Pradesh 1981 267000 125740.1 24181.27

Maharashtra 1981 1072000 289237.9 112646.4

Orissa 1981 117000 50189.43 7905.09

Punjab 1981 168000 76101.32 12796.07

Rajasthan 1981 150000 68334.8 12672.08

Uttar Pradesh 1981 678000 172903.1 28755.88

West Bengal 1981 854000 153405.3 55061.99

Andhra Pradesh 1982 466000 95555.11 22184.72

Assam 1982 102000 20671.76 4495.55

Bihar 1982 326000 197216.4 32685.46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

Delhi 1982 82000 25414.32 5192.88

Himachal Pradesh 1982 22000 11074.01 3230.71

Madhya Pradesh 1982 274000 138644.4 27500

Maharashtra 1982 1080000 313024.9 112852.4

Orissa 1982 119000 55547.06 7971.07

Punjab 1982 186000 79975.86 12295.99

Rajasthan 1982 156000 70547.06 11947.33

Uttar Pradesh 1982 692000 200341.9 52266.32

West Bengal 1982 820000 164167.3 49721.81

Andhra Pradesh 1983 490000 106213.2 28979.39

Assam 1983 101000 19482.24 4417.26

Bihar 1983 327000 215309.9 40022.54

Delhi 1983 101000 32932.73 6493.88

Himachal Pradesh 1983 24000 18484.5 4278.82

Madhya Pradesh 1983 294000 164130.8 28937.54

Maharashtra 1983 1053000 320589.6 102714.1

Orissa 1983 122000 61591.08 6918.87

Punjab 1983 194000 92588.81 11793.3

Rajasthan 1983 180000 77611.49 11506.76

Uttar Pradesh 1983 718000 232180.7 45035.42

West Bengal 1983 853000 162664.4 49439.79
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APPENDIX 2.1 : The Variance-Covariance M atrix.

The variance-covariance matrix E can be written as

I  = E(ejei) =

0 + e 2)a 2 
-  0a2

- 0 a w 

d + 02)a2
- 0 a 2 

0a^, (l + 02)a ^

= a 2 C

where £2 =

l + Qz  - 0
- 0  1 +  0

0

- 0
0 - 0  I + 02

From Hamilton (1994) we get the determinant of Q:

| £) |=l + 0 + ... + 0zl =2T 1 - 0 2(T+I>

1- 02

Inverse and determinant of E

E-1 = - V n_I 
a 2

|E |= (a2 )T |Q |

• Derivatives of Q

'20 -1  ... 0
dQ.= -1  20 ...
50 : E -1

0 0 ... 20
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— — = 21, where I is the identity TxT matrix
ae2

Derivatives of ln|Q|

^ L t r a c ^ Q - ' ® ,
se  ae

^ 2121= ^ - 0 - ' ^ - '  — + 2n - ' l )  =  t r a c e ( - n - 1 *  
ae2 30 30 30 30

Derivatives of Q '1

50 aj>

= + 2 Q - '  ^ q - '  — n _l -  2n - '  
ae2 a<i> a«t»

• Useful Formulas:

^In | A | _ = tr(A— — ) [Dhrymes (1978), p. 534]
da da da

— — = -A -1 A-1 [Dhrymes (1978), p. 540]
da da

+ 2Q-1)

(2.*il)

(2 *12)
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APPENDIX 2.2 : Ujt |ejt-

• S a H i t - N O i .a J )

Recall that

vj{ ~ iid N(0,cr2 )=> vjt -  <j>vit_, -  N(0,(1 + (j)2 )ct2 ), 

ujt ~ iidN (0, a 2 ), and

=Cvit ~ <Kt-l) + “ it N(0,(1 + <j>2) a 2 + a 2 )

Now the probability density function (pdf) o f  (vit - ), ujt, and £jt are respectively

1 , (v it “  <Kt-l )2 ,f(v«t -» vit-i)= __ i . exp{— zrur^~)'
y/2n^j(l + ^2)a l  2(1 + + )<rv

f(u it) = -! - j=exp{—! and
V2ir-y/CTu

f(eit)  ------- . l - — = = rex p {------------7 ^ 5 ----- —}.
' j2n-J(l + $ 2 )<Sv + a u 2 ( ( l  +  < j > " ) a v + c t u )

The joint pdf o f (vit - <j>vit_j) and ujt will be

f(vi t -<t>v,t-i,Iiit)=  , , 2 ----
(v 2 jc ) -y(! +  <(> )o 2ct2 2 (1 +  <i> )^v 2<*u

Now the joint pdf of e,t and u,t can be written as

73
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t: ^2 ~  2

(V * o 2V ( W 2) < ^ i :
exp{-

2(1 + <|>2)a2
it

2crf

We can find that the exponential term is equal to

( S j t ~ g i t ) 2 , “ it 

(1 +(j>2 )crv

~  2  ~  2 U ,2
(l + «j>2)a2

- 2
?

Sit
(1 + <|>2)CTv (1 + <|>2)ct2

(l +  <j)2 )<T2 +<r2 ~  2 „ “ it^t
si , a2\—2 2 “ «* 2
(1 + <P )®v®u

<1-,'* 2)g -»+ g i - (g|, ^ - 2 u il_  ^ a ‘

Sit"
(1 + <I>2)ct2 (l + <j>2)a2

(l + (J)2)a2cy2

( l  +  <j>2 )cr2 +<y2
7 7 7 *Uit “(l + (j)2)cr“cru

(l + <()2)a2 + ct2
) +  ■

(! + ♦ )a

Sit®u

(1 + <|>2)ct2 + a„- ) 2 ~

~  2 2 
%  ®u

7

Sit"

[(l + «|,2)a2 +a5][(l + <|>2)a2] (l + <|>2)a2

/•i .1.2* 7 2( l +  <j> )arv + ctu

7 7 7
(1 -4-<t»-)ar-cy-

__ 7

Sit”

Sit®!
(1 + <|>2)ct2 + a “r ) 2 -

(l + <()2)tT2 (l + <j>2)a2 +<t2

(!+<|>2)g2CT2
( l  +  «j»2 )cr2 + a l

'(^it ~ Sit®u
(l + <t>2)®2 +®i

-1

- ) 2 -

— 1

(1 + <|>2 )cr2 +  a 2

Now the joint pdf o f Ejt and Ujt can be further written as
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f (5 t .S |,)=  ■ 1 ,  ,  ,-a p t -------------‘ ,  ,  ( g |, --------- — r )2 l
( j 2 K ) 2 yj ( l  +  b  )<*v<*U 2  (1 +  *  ) g v g u  (1 +  <J> )° v + a u

( l +  <(>2 ) a 2 + cr2

~ 2
exp{ £it

2(l-t-<J>2)cy2 +<y2

Using Bayes theorem, the conditional pdf of u jt | %  is

f(u„ I % ) = ------- , ,  ,  exp) ‘ ,  ,  (g| t -------- ------------- r>2 1
I (1 + (|> )g2q 2 2 (! + <!> )gygq d  + + <*u

V [(l +  «t>2 )CT2 + a 2 ] ( l  +  <j»2 )cr2  + C T U

f(“ it i£ i t )=— T7=r exp{— - ^ r t )2}.
V27C-̂ CT.

. cr2 2 ( 1  +  <|>2 ) c t 2 c t 2where p it = ------—^ a n d  a ;  =
(l + «()2)a2 + ct2 (l + (j>2)a2 + o 2

Thus the conditional distribution of uit 1£jt follows the normal distribution with mean

p*t and variance a 2 :

“ it 1 %  ~N(p*t ,cr2),

U C5 J 2 (1 + <|>2)<72C72where p it = ------ — and cr. = -------— — \
(1 + <|> )<r2 +  crj (1 +  4> ) c -  + c u
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• ECe^le*)

E (eu“ 1 % ) =  J eUi,f (u j t |e j t )d u it =
-00

= — I----- af e “ite"(ii“- ^ )2/ (2a*2) d u it =r— 2-1 11V2jICT* —co

1 °fe~t(git~fa)2/ (2g?)-Uit] /4TT.
~ nr- 2 J !tV27ta; _oo

2
(ui t -H *)2 -  u,2 -2 u itn*t + ^ t ~2uitg« u2 - 2 u itQi*t -fa2) * ^ '

2a2 11 2a2 2a*
2

" fr it  + g « ) ] 2 -fr*t + g * ) 2 + * 4

2a2

[uft ~  f r i t  +  g « )I2 (2^11 +  CT« )g » _

2a* 2a*

[“ ,? -0 * 1 + w?)]2 .

Finally,

2a* 2

| eit) = _ _ L _ e (̂ +q- /2) j e-(Sit-Rt-<T?)V(2«) ^  = 
V27ca. _«
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C h a p t e r  3 : M a t h e m a t ic a l  Pr o g r a m m in g  Es t im a t io n  o f  a 

P a r a m e t r ic  Pro d u c tio n  F r o n t ie r

3.1 Introduction

Aigner and Chu (1968) developed a mathematical programming method for the 

estimation of a parametric production function with a one-sided error term to ensure that the 

estimated production function will exceed the output level actually produced from a given 

bundle of inputs. There are two problems with this approach. First, the estimated frontier is 

deterministic (non-stochastic) and does not allow any stochastic noise to influence the 

frontier. No account is taken of exogenous shocks over which the firm has no control and 

any deviation from the frontier is treated as technical inefficiency. The second limitation of 

this mathematical programming approach is that even though the input-output data set is only 

a sample from some underlying population, the sampling distribution of the estimated 

parameters cannot be derived analytically. As a result, we can not construct confidence 

intervals for the estimated parameters. As an ad hoc adjustment for the possibility of 

statistical noise, Timmer (1971) extended the Aigner and Chu approach by allowing an 

arbitrary percentage o f  observations to lie above the frontier. Richmond (1974) developed a 

method for the econometric estimation of a parametric deterministiv production frontier, by 

specifying a gamma distribution for the disturbance term. Greene (1990) proposed the 

corrected OLS (COLS) procedure, where the intercept is sufficiently adjusted to bring the 

observed data points below the frontier. But the resulting frontier also remains deterministic.

77
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In a pair of seminal papers, Aigner, Lovell and Schmidt (1977) and Meeusen and van 

den Broeck (1977) introduced the stochastic production frontier. The specified model 

incorporates a composed error term (5), which is the sum of the exogenous shocks 

represented by a two-sided error term (v,) and the technical efficiency that is represented by a 

one-sided error term («,):

£j= Uj - Vj. (3.1)

The composed error term models are estimated by the maximum likelihood 

procedure, which requires that the statistical distributions of the components have to be 

explicitly specified. However, such specifications are generally arbitrary. Further, alternative 

distributional assumptions usually lead to different conclusions about the technical efficiency 

level of a firm (Greene, 1993). Another disadvantage of estimating a stochastic frontier using 

econometrics is that one cannot impose any inequality restrictions on the estimated 

coefficients based on the economic theory. For example, we cannot ensure that marginal 

productivities of inputs would be non-negative. Finally, one problem with any parametrically 

specified function is that the validity of any inference drawn from the fitted model is 

contingent on the validity of the specified form.

In the nonparametric approach known as Data Envelopment Analysis (DEA), 

introduced in the Operations Research literature by Chames, Cooper, and Rhodes (1978, 

1981) and further refined by Banker, Chames, and Cooper (1984), one makes only a 

minimum number of regularity assumptions about the technology but leaves the exact form of 

a production, cost, or profit function unspecified. Because DEA also relies on mathematical 

programming, the resulting efficiency measures lack statistical properties. In a number o f 

recent papers, Simar and Wilson (1992, 1995) have resorted to the bootstrap procedure in an
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effort to generate an empirical distribution function of the DEA efficiency measure. One can, 

therefore, construct confidence intervals from the empirical distribution.

A major drawback of the DEA procedure is that it cannot be used to predict the 

maximum output producible from any input bundle, which is not already observed in the 

sample. Thus, it is not useful for out-of-sample prediction. For this purpose, one must have a 

parametric function. Another disadvantage of the DEA methodology is that the estimated 

frontier is deterministic and it ignores any exogenous shocks that might influence the firm’s 

behavior.

In this chapter, we revive the mathematical programming model by Aigner and Chu 

(1968), but we append a composed error term to a parametric frontier. As in the econometric 

models, the composed error is the sum of a two-sided random shock and a one-sided error 

representing inefficiency. Further, the mathematical programming model allows us to impose 

inequality restrictions on the coefficients.

The principal innovation in this paper lies in the fact that no assumptions are made 

about the distribution of the error terms except that they are independently distributed. Also, 

the proposed method allows us to impose inequality restrictions on the estimated parameters. 

It is well known that, when inequality restrictions are imposed, OLS or maximum likelihood 

estimation leads to not well defined statistical distributions of the estimated parameters. 

Hence, the resulting confidence intervals from restricted OLS estimation and the relevant test 

statistics might be invalid (Yancey 1981, and Judge et al, 1985). On the other hand, the 

estimated parameters obtained by any mathematical programming method are point estimates 

and have no statistical properties. We overcome this problem by applying bootstrap methods 

to obtain the statistical properties of the estimated stochastic frontier. This chapter is
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organized as following. In section 3.2, the quadratic programming model is laid out. Section

3.3 describes the smoothed bootstrap procedure applied. Section 3.4 includes an empirical 

application using state-level data on manufacturing output and inputs obtained from the 1992 

Census of Manufactures.

3.2 The Quadratic Programming Model

Consider a data set (x’.yj) from n firms. Let y-, and x* represent respectively the scalar 

output level and the input vector of k  inputs for firm i in logarithmic terms. Assume that 

there is a monotonic frontier production function:

y{ i=l,2,...,n, (3.2)

where y {  is the maximum (or frontier) output obtainable from input bundle x1 and 

fii,..., fi}  is a vector of parameters to be estimated. In the stochastic specification the 

observed output is related to the unobservable frontier output as:

yj= yif+ei = f(x1; 0) + ̂ ;  Si = Vi-Ui; i=l,2,...,n, (3.3)

where v,- represents a two-sided error term reflecting random shifts in the frontier due to both 

favorable and unfavorable shocks and w, >0 is a one-sided error term that represents technical 

efficiency. We assume that both u, and v,- are independently and identically distributed for 

any i=l,2,...,n. Further, v,- and Uj are statistically independent of each other ij=l,2,...,n. 

Finally, we assume that the two-sided error terms v, have zero mean. No other assumptions 

are made about the specific distribution of the error terms.

We can then estimate the above production function by solving the following 

quadratic programming (QP) problem:
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1 n I n
mm ^ CY A + -z ( \~ c)!L

i=l
1 n 

• * ~ 2 > y
nM

st f ( x l ;0 )  + v, -  Uf = y , ; i = IJ. n

R(P)Z 0 (3.4)

2>/ = 0 
i=l

Uj > 0; i = 12 n.

Here c is the weight (0<c< / )  assigned to the component due to exogenous shocks 

and (1-c) is the weight assigned to the efficiency component. Further, R(/7) < 0 is a set of 

restrictions on the parameters. For the deterministic frontier model, similar to the Aigner and 

Chu (1968) frontier, we set v,=0 for each / and the problem reduces to

Imin — V
z i=l - y = i

st f (  xl ;0 )  + v,- -  M| = y  -t ; i = 12...n

R(P)Z 0 (3.5)

u, > 0; i = \2. -,n.

Notice, that the first term of the objective function in (3.4) disappears when either 

c=0 or each v,- equals 0. However, when c=0, the v,- s feature in the restrictions and affect the 

optimal values of the u, s.

On the other hand, when technical inefficiency is ignored, the problem becomes
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m® :rZ (v«J2
z i= I

st f (  + v,- -  u{ = y{; i = 12 n

(3.6)

t  v,=0.
i=l

As in the previous case, the second terra of the objective function in (3.4) disappears 

when either c=l or each u, equals 0. However, when c=l, the u, s feature in the restrictions 

and affect the optimal values of the v,- s.

In a stochastic frontier model, where both terras in the objective function are retained 

(0<c<l), when c< 0.5 then I-c >0.5 and greater emphasis is given to the technical efficiency 

term, while when c>0.5 (I-c < 0.5), greater emphasis is given to the random shocks. We can 

vary these weights to examine the sensitivity in the distribution of the error terms. The term 

R(fi) < 0 refer to the set of restrictions that one might want to impose, such that the f t  s 

(j=I,2, ...k) satisfy certain economic conditions.

If we assume that the production function is Cobb-Douglas and that inputs and 

outputs are expressed in natural log, then the previous quadratic programming problem takes 

the form:
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| « ,  I « f  1 n

- h  r S "  ♦ s '1- * # * - # *

s* -#) + X^y-v+v» -  “/ = w »= 1.2 «
M  

R(ft)<  0
(3-7)

5 > , » o
i=l

u,- > Or / = 1.2 n.

One problem in the econometric production frontier is often the marginal 

productivities (or equivalently, the partial elasticities) of inputs are negative. Even when we

impose non-negativity restrictions in the QP-problem some of the f t  s (j=l,2 k) may be

zero at the optimal solution. To avoid this problem, we impose upper and lower bounds on 

them.

Note that under competitive conditions:

(3.8)p dlny _ dy *j _ wjXj
•* dlnxj  3xj y py

where wy- is the price of j-th input and p  is the price o f the output. Thus, each f t  {j—l,2 k)

becomes the ratio o f the expenditure on input j  to the total output. When this information is 

available, as is the case in our empirical application, we can set the highest and the lowest 

observed values of this ratio as respectively, the upper and lower bounds of the f t  s. This is 

comparable to the multiplier bounds imposed for assurance region analysis in Data
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Envelopment Analysis (Tompson et al., 1994). Now the quadratic programming model (3.7) 

can be written as:

n2I n I n I n
— c j \ V f  + — f l - c ) J \  U : ------ y \ u i

m«n 2 2 "/=, ')

st A  + Y.flk*g + vi ~ui = yi'y 1 = l-2 n
j=I

j = U,...,k
(3.9)

5>, =0
i=l

> 0; i = 1,2 n.

The optimal solution of this problem yields estimates o f the parameters of the 

specified function. However, these would be merely point estimates subject to variability 

across samples. It is important, therefore, to examine the sampling distribution of the 

quadratic problem estimators. Without any specific distributional assumption about the error 

components and, additionally, due to inequality restrictions, it is not possible to analytically 

derive the sampling distribution of the estimators and construct confidence intervals. To 

overcome this difficulty we will bootstrap to form the empirical distribution of the error 

terms.

3 3  The Bootstrap Procedure

The starting point of any bootstrap procedure is a sample of observed data drawn 

randomly from some population. The sample statistic computed from this set of observed
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values is merely an estimate of the corresponding population parameter. When it is not 

possible to analytically derive the sampling distribution of that statistic, one examines its 

empirical density function. Unfortunately, however, the researcher has access to only one 

sample and cannot draw multiple samples from the same underlying population. The basic 

assumption behind the bootstrap method is that the random sample actually drawn “mimics” 

its parent population. Therefore, if one draws a random sample with replacement from the 

observed values in the original sample, it can be treated like a sample drawn from the 

underlying population itself. Thus, repeated samples with replacement yield different values 

of the sample statistic under investigation and the associated empirical distribution (over 

these samples) can provide the sampling distribution of this statistic. This is what is known as 

the naive bootstrap.

One major drawback o f the naive bootstrap procedure is that even when sampling 

with replacement a bootstrap sample will not include any observation from the parent 

population, which was not drawn in the initial sample. Thus, the naive bootstrap samples are 

effectively drawn from a discrete population and they fail to reflect the fact that the 

underlying population density function is continuous. Hence, the empirical distribution 

derived from the bootstrap sample is not a consistent estimator of the true underlying 

sampling distribution of the statistic. The use of smoothed bootstrap that it is presented in 

section (1.5.1) helps to overcome this problem.

For the problem at hand, let F„ and Fv be the unknown population density functions 

of u and v respectively. The following algorithm describes the steps for the complete method:

i) Solve the mathematical program (3.9) to obtain the estimates

P  =  { P o - P \  P k } ’ v = {v \.v z  vn } and u = {u x,u2  un } .
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ii) Select the b-th (6=7,2, independent bootstrap samples

vb = fvlJ>'v2J> vnJ>} ub ~ { u\Jb,u2Jt unJ>/

with replacement from the estimated v = {v \,v2  vn } and u ={u\ , u2. . }

respectively.

In the smooth bootstrap procedure, we use Gaussian Kernel density functions to 

smooth the empirical distributions of the error terms. The empirical density function

where <f(.) is the standard density function and hv is the window width or smoothing 

parameter for the density function v. The empirical density function f u of the one

sided error term term u,- (7=7,2 n) is zero for negative u,- s. With the use of the

reflection method described in section 1.4.2, the empirical density fu can be written 

as

where hu is the window width or smoothing parameter for the density functions u.

The choice of the smoothing parameters hv and hu is subjective. It has been 

shown by Silverman (1986) that the values of hv and hu are defined by the

minimization of the mean integrated error of the distributions f v and fu

respectively. The smoothing parameters are calculated as:

f  v of the two-sided error term v(- (7=7,2, ...,n) can be written as

n h v i=i h v y
(3.10)

(3.11)
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hv = 0.9 Av n‘l/s,
( 3 I2 )where Av=min (standard deviation of v , interquartile range of v /1.34), 

and

hu = 0.9 A„ n'|/s,

(3 I3 )where Au=min (standard deviation of u , interquartile range of u /1.34).

Finally, if we apply the convolution theorem, the smoothed b-th bootstrap samples

** ** «* ** •*
v b = { V\J>'V2J> v n J b } * n & u b  ~  (  U \J> ’U2Jb u nJ>J

can be constructed from f v and fu as following:

vTjb = v *ijb +hv£Jj, ~ K *  i = l,2,....,n (3.14)

and

u*l = absolute^u*^ +hu£“J)) ~ F u -, i = 1^2,-..-,n . (3.15)

where and are random numbers, which are identically and independently

generated from the standard normal distribution. These random numbers are 

independent of each other because we assumed that the two error terms are 

independently distributed.

iii) Create the b-th pseudo data set (x',yi.b*) i=l,2,...,n, where y^’^ x 1; f i  )+vu,**-ui,b*\

iv) Solve model (3.8) using the b-th pseudo-data set to obtain the bootstrap estimates:

f i b  f id jb ’f i l j b  f i K J b } ’ *b =  f h j > ’^2J> v n jb }  311(1 H  = { ^ \ J b ^ 2 J > < — ^ n J b  }  ■

v) Repeat steps (ii)-(iv) B times for a set of estimates { fif,, vb, and for b=1.2......B}.

vi) Calculate the average of the bootstrap estimates of fi, v and u as the arithmetic mean:
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fik k = 0,1,...,K , (3.16a)
"  6=1

- *  1 B *

V ,  = —  i  = l,2,...,n, (3.16b)
B 6=1

- *  1 B .*Mj = ~  '  1,2,..., n . (3.16c)
"  6=1

We can now calculate the bias, bias-corrected estimates and construct confidence 

intervals for each of the estimated parameters. The estimated bias of the bootstrap estimated 

parameters based on B replications is

b ia s * (A )  = A* -  A; k = 0,1,2,..., K , (3.17a)

bias#(vt ) = v* - vf; i = l,2,...,n, (3.17b)

biasg(jUf) — u* — Uj; i = l,2,...,n. (3.17c)

Before we correct our estimates for the bias from the bootstrap we need to examine 

whether the estimated bootstrap-bias is small compared to the estimated standard error. The 

standard error o f each of the estimated parameters is measured as

se. k = 0 ,l,..„K , (3.18a)
V B  “ 1 6 = 1

seB (v* ) = X  (v*j, -  v*)2 ; i = 1,2,..., n , (3.18b)
V B  —16=i
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seB(«*) = (3.18c)

The bias-corrected estimated parameter will be given by the formulas:

~Pj = P j ~  biasB( ^ y ) = 2P j -  P j ; j = 0,1,..., k , (3.19a)

v, =  v, - b ia s B(v,) = 2v, - v* ;  i = l,2 ,...,n , (3.19b)

m ,  = - b ia s B(i/,) =  2 k ,  - u * \  i = 1 , 2 , . . . , n . (3.19c)

We are also interested in the distribution of the error terms. Because the vs by 

construction add up to 0 in each replication, then the bias of the v s will also add up to 0. 

Thus, the average of the bias-corrected v s will be equal to 0. The detailed calculations are 

presented in Appendix 3.1. From (3.19b) we can calculate the variance of the two-sided bias- 

corrected error term:

Similarly we can use (3.18c) to estimate the arithmetic mean and variance of the 

technical inefficiency error term:

var( v) (3.20)

u = — , and (3.21a)

var(u) = —l—  £ ( « ,  - u )2 . (3.21b)
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Finally, we can construct confidence intervals for the estimates of the parameter fi. 

First, we must adjust the estimates of ̂ from  each bootstrap , (b = 1,2,..., B) such that they

are centered on f3 , the bias-corrected estimate of fi, i.e. E (/}(>) = b= l,2 ,...,B ).

According to this, the adjusted estimate from each bootstrap will be

K j> = 0jj,-2binsB (jS j);  b = U ,...,B ; j  = 0,l,...,k. (3 22)

Once we have calculated the adjusted estimates we can use the percentile method to 

construct the (l-2a)% confidence intervals for each /?as

(b ](a). y p ~ a) j = °-1 k . (3 23)

where and is the (100*ath) and (I00*(I-a)*b) percentiles of the empirical

density of (b = I,2,...,B; j = 0,l,...,k).

3.4 The Empirical Application

In this chapter we estimate a Cobb Douglas stochastic frontier production function 

for U.S. manufacturing using the Quadratic Programming-bootstrap procedure described in 

the previous section. The m anufac tu ring  sector is visualized as an industry producing a scalar 

output from six inputs: (1) production workers (L), (2) non-production workers (employees, 

EM)), (3) buildings and structures (i.e., land and buildings, BS), (4) machinery and 

equipment (ME), (5) materials (M), and (6) energy (ENER). The data for different states have 

been obtained from the 1992 Census o f Manufacturing. Details of data construction are 

provided in Table 3.1. The number o f establishments covered by the Census varies widely
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across states. State level input-output quantity data for the "representative establishment" 

were constructed by dividing the state-level total values of the variables by the number of 

establishments covered in the state.

In order to estimate a Cobb-Douglas production function we regressed the logarithm 

of the output on the logarithms of the inputs and the results are presented in Table 3.2. We 

find that the coefficients of production workers (L) and energy (ENER) are negative and non

significant. One might want to impose restrictions on these coefficients, such that the 

estimated values are consistent with the economic theory, for example, non-negative shares 

for the Cobb-Douglas production function. However, when inequality restrictions are 

imposed the statistical distributions of the estimated parameters are not well defined (Yancey, 

1981, Judge et al., 1985).

We calculated the observed minimum and maximum input shares across all states 

and the results for each input are presented in Table 3.3. The calculation of the shares was 

possible due to the availability o f input prices in our sample. We notice that the estimated 

shares of production workers (L), and energy (ENER) are lower than the minimum observed 

across all states. Similarly, the estimated shares of building and structure (BS) and machinery 

and equipment (ME) are greater than the observed maximum shares across all states.

We allow the values of the weight parameter, c, in the objective function to vary and 

we set it equal to 0.1, 0.25, 0.50, 0.75, and 0.90. The optimal solution of (3.9) for the 

alternative values of c gives us the point estimates, which are presented in Table 3.4. The 

parameters of interest include the intercept, Po, the input coefficients, P l, Pem, Pbs, Pme, Pm, 

Pener> the variance of the two-sided error term, var(v), the arithmetic mean and the variance 

of the one-sided error term, u and var(u). Due to the Iog-Iinearity of our production function,
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the coefficients of all inputs remain the same across alternative values of the weight 

parameter. The coefficients of production workers (L) and Energy (ENER) are restricted by 

their lower limits, i.e. their minimum observed shares, while the coefficients of non

production workers (EM), buildings and structures (BS), and machinery and equipment (ME) 

are restricted by their upper limits, i.e. their maximum observed shares. Only the values of the 

intercept are changing. More specifically, the intercept is increasing as the weight, c, is 

shifted from the technical efficiency (c<0.5) to the random shock (c>0.5). Also, we observe a 

pattern for the average and variance of the error terms. The values of the mean and the 

variance of the one-sided error term that represent the technical inefficiency are increased as 

the value of the weight parameter, c, is increased, while the variance of the two-sided error 

tern that represents the random shock is reduced.

Table 3.4 also includes the results for the deterministic frontier (v=0) and the case 

where we ignore the existence of the technical inefficiency (u=0). The last case is equivalent 

to the restricted OLS estimation. As one should expect, the coefficient of the deterministic 

frontier is higher than the coefficient of the restricted OLS function. This finding agrees with 

the transformation of a deterministic frontier, where we subtract the arithmetic mean of the 

one-sided error term from the intercept and the error terms, such that the transformed error 

terms have zero mean.

At the bottom of Table 3.4, we report the values o f  the smoothing parameters, hv and 

hu, which are later used for the bootstraps. The values o f the smoothing parameters are 

calculated using (3.12) and (3.13) for each case that we estimate. For each of the estimated 

scenarios we performed 2000 bootstrap replications based on the algorithm, which is given in 

the previous section. Tables 3.5 to 3.11 contain for the two alternative scenarios: i) the point
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estimates for coefficients of the Cobb-Douglas production function from the quadratic 

program, ii) average estimates from the 2,000 bootstrap estimations (see 3.16), iii) the bias of 

the point estimates from the average bootstrap estimates (see 3.17), iv) the bias-corrected 

estimates (see 3.19), and finally v) the 95% confidence interval for the bias-corrected 

estimates (see 3.23). The bias corrected estimates for non-production workers (EM), building 

and structures (BS), machinery and equipment (ME), and materials (M) are higher than the 

point estimates due to negative estimated bias, while the bias corrected estimates for 

production workers (L) and energy (ENER) are lower than the point estimates due to the 

existence of positive bias. The variance of the two-sided error terms (v) and the average and 

variance of the one-sided error term (u) are calciJated from the point estimates for the error 

terms, while the bias corrected variances and arithmetic mean are calculated from bias 

corrected error terms.

Consider the case of c=0.25. This implies that greater emphasis is given to the 

technical inefficiency term (u) rather than the random shock (v). The two-sided error term 

values (v) are allowed to vary more than the one-sided error term values (v), since the 

influence of the v s on the objective function is diminished. It is interesting to compare the 

estimated input shares from the regression with the 95% confidence intervals obtained from 

the bootstrap replications and the adjustment for the bias. With the unique exception of 

materials (M), no other regression coefficient is within the limits of this confidence interval. 

On the other hand, all the bias corrected input coefficients are within the 95% confidence 

interval obtained from the regression. The same conclusions hold true for the other scenarios 

with alternative values of the weight parameter. Also, we notice that the 95% confidence
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intervals for all inputs have the smallest width when the weight parameter equals 0.5, and 

they become wider as the weight parameter approaches 0 or I .

3.5 Summary

This chapter revives the mathematical programming approach for the estimation of a 

production function by Aigner and Chu (1968) and develops another method for the 

estimation of a composed error frontier. The estimation of a composed error frontier with 

econometric techniques requires the specification of distributional assumptions about the 

error terms. The principal contribution of this chapter is the estimation of a composed error 

frontier without the need o f such assumptions that are arbitrary and lead to different 

conclusions when they are altered. Another advantage of this method over the econometric 

techniques is the ease of imposing inequality restrictions. These are achieved through the use 

of mathematical programming. However, the resulting solution contains point estimates with 

no statistical properties. We overcome this problem with the use of bootstrapping. Sections 

(3.2) and (3.3) describe the quadratic programming and the appropriate bootstrap algorithm. 

Finally, an empirical application is discussed in section (3.4) as an illustration of this method.
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Table 3.1: Definition and construction of the Variables

Output: V = Value of Output (millions of $)

Input 1: L = Number of Production Workers (in thousands)

Input 2: EM = Number of Non-production Workers (in thousands)

Input 3: BS = Building and Structures

= [Depreciation Expense +

Rental Payment for Building and Structures]

/ [Median Rent per Room in 1990] (in millions of $) 

Input 4: ME = Machinery and Equipment

= [Depreciation Expense +

Rental Payment for Machinery and Equipment]

/ [Price of Machinery and Equipment = $1]

(in millions of $)

Input 5: M = Materials

= [Material Expenses + Contractual Work]

/ [Price of Materials = $1] (in millions of $)

Input 6: ENER = Energy Input

= [Expenditure in Fuels and Purchased Electricity]

/ [Price of Energy per Btu] (in millions of $)
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where:

Price of Energy = [Share of Coal in Total Expenditure on Energy in the State]

•[Price o f Coal]

+ [Share of Natural Gas in Total Expenditure on Energy in the State]

* [Price of Natural Gas]

+ [Share of Petroleum in Total Expenditure on Energy in the State]

* [Price of Petroleum]

+ [Share of Electricity in Total Expenditure on Energy in the State] 

•[Price of Electricity]

Note: These data are from Ray and Mukheiji (1998). All variables refer to the year 1992 

unless otherwise stated. The Census of Manufacturers reports the input-output data 

aggregated for all establishments covered from a state in the Census. The input- 

output data are scaled by the reported number of establishments for each state.
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Table 3.2: Regression Analysis

Model: MODEL 1 
Dependent Variable: V

Analysis of Variance

Source
Prob>F

Model 
0.0001 
Error 
C Total

DF

44
50

Sum of 
Squares

8.20377

0.22430
8.42807

Mean
Square

1.36729
0.00510

F Value

268.218

Root MSE 0.07140 R-square 0.9734
Dep Mean 1.96180 Adj R-sq 0.9698
C.V. 3.63942

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > | T |

INTERCEP 1 2.955038 0.39346284 7.510 0.0001
L 1 -0.036681 0.05118087 -0.717 0 .4774
EM 1 0.229876 0.04125152 5.573 0.0001
BS 1 0.103130 0.04784336 2.156 0.0366
ME 1 0.157231 0.05268956 2.984 0.0046
M 1 0.599548 0.04680768 12.809 0 .0001
ENER 1 -0.031431 0.02943688 -1.068 0.2915

95% Confidence Interval
INTERCEP 2.18387 3 .72621
L -0.13699 0.06363
EM 0.14902 0.31073
BS 0.00936 0.19690
ME 0.05396 0.26050
M 0.50781 0.69129
ENER -0.08913 0.02626
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Table 33: Minimum and maximum input shares

Variables minimum share maximum share

L 0.05427 0.13600
EM 0.05708 0.26876
BS 0.00399 0.01783
ME 0.01340 0.05267
M 0.21086 0.61335
ENER 0.00452 0.04562
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Table 3.4:Quadratic Programming Results (point estimates)

c = 0.10 c = 0.25 c = 0.50 c = 0.75 c = 0.90 v=0 u=0

(3o=intercept 2.84466 2.89146 2.96945 3.04745 3.09425 3.12643 2.81346

X
D II 0.05427 0.05427 0.05427 0.05427 0.05427 0.05427 0.05427

5° II r 0.26849 0.26849 0.26849 0.26849 0.26849 0.26849 0.26849

Pj — PbS 0.01783 0.01783 0.01783 0.01783 0.01783 0.01783 0.01783

P4 — PmE 0.05267 0.05267 0.05267 0.05267 0.05267 0.05267 0.05267

P* = p M 0.58908 0.58908 0.58908 0.58908 0.58908 0.58908 0.58908

Pfi =  p E N B R 0.00452 0.00452 0.00452 0.00452 0.00452 0.00452 0.00452

Variance(v) 0.00427 0.00297 0.00132 0.00033 0.00005 N.A. 0.00528

Average (u) 0.03120 0.07800 0.15599 0.23399 0.28078 0.31296 N.A.

Variance(n) 0.00005 0.00033 0.00132 0.00297 0.00427 0.00528 N.A.

h v 0.01992 0.01660 0.01107 0.00553 0.00221 N.A.

h . 0.00221 0.00553 0.01107 0.01660 0.01992 N.A.
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Table 3.5: Bootstrap Results for c =  0.10

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 2.84466 2.86589 0.02123 2.82343 2.55938 3.15153

P t 0.05427 0.07735 0.02308 0.03120 0.00812 0.08985

Pem 0.26849 0.26118 -0.00731 0.27580 0.23658 0.28338

Pbs 0.01783 0.01144 -0.00640 0.02423 0.01678 0.03062

Pme 0.05267 0.03992 -0.01275 0.06542 0.03891 0.07817

Pm 0.58908 0.57695 -0.01214 0.60122 0.53624 0.63762

Pener 0.00452 0.01206 0.00755 -0.00303 -0.01058 0.03053

Variance(v) 0.00428 0.01676

Average (u) 0.03120 0.04050

Variance(u) 0.00005 0.00021
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Table 3.6: Bootstrap Resalts for c = 0.25

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 2.89146 2.87653 -0.01493 2.90639 2.68315 3.19200

Pl 0.05427 0.07574 0.02146 0.03281 0.01135 0.08915

Pem 0.26849 0.26199 -0.00650 0.27499 0.24120 028176

Pbs 0.01783 0.01114 -0.00670 0.02453 0.01738 0.03123

Pme 0.05267 0.03929 -0.01338 0.06604 0.04015 0.07942

Pm 0.58908 0.57994 -0.00915 0.59823 0.54230 0.63164

Pener 0.00452 0.01098 0.00647 -0.00195 -0.00842 0.02535

Variance(v) 0.00297 0.01171

Average (a) 0.07800 0.10930
i

Variance(n) 0.00033 0.00130 i
i1
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Table 3.7: Bootstrap Results for c -  0.50

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 2.96945 2.90000 -0.06945 3.03891 2.82565 3.30702

Pl 0.05427 0.07382 0.01955 0.03472 0.01518 0.08340

Pem 0.26849 0.26251 -0.00599 0.27448 0.24319 0.28073

Pbs 0.01783 0.01126 -0.00657 0.02440 0.01713 0.03097

Pme 0.05267 0.03987 -0.01280 0.06547 0.03900 0.07826

Pm 0.58908 0.58155 -0.00753 0.59661 0.54385 0.62841

Pener 0.00452 0.01060 0.00609 -0.00157 -0.00766 0.02273

Variance(v) 0.00132 0.00519

Average (a) 0.15599 0.23557

Variance(u) 0.00132 0.00519
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Table 3.8: Bootstrap Results for c = 0.75

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 3.04745 2.96463 -0.08282 3.13026 2.88197 3.43647

Pl 0.05427 0.07470 0.02042 0.03385 0.01342 0.08971

Pem 0.26849 0.26285 -0.00564 0.27413 0.23940 0.28003

Pbs 0.01783 0.01123 -0.00660 0.02444 0.01720 0.03104

Pme 0.05267 0.03940 -0.01327 0.06593 0.03993 0.07920

Pm 0.58908 0.58049 -0.00859 0.59767 0.54219 0.63052

Pener 0.00452 0.01127 0.00676 -0.00224 -0.00900 0.02453

Variance(v) 0.00033 0.00130

Average (a) 0.23399 0.33420

Variance(u) 0.00297 0.01169
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Table 3.9: Bootstrap Results for c — 0.90

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 3.09425 3.02093 -0.07332 3.16756 2.87585 3.51009

Pl 0.05427 0.07701 0.02273 0.03154 0.00881 0.09053

Pem 0.26849 0.26096 -0.00753 0.27602 0.23620 0.28381

Pbs 0.01783 0.01141 -0.00643 0.02426 0.01684 0.03069

Pme 0.05267 0.03889 -0.01378 0.06645 0.04097 0.08024

Pm 0.58908 0.57952 -0.00956 0.59864 0.53779 0.63247

Pener 0.00452 0.01161 0.00709 -0.00258 -0.00967 0.02674

Variance(v) 0.00005 0.00021

Average (a) 0.28078 0.37481

Variance(a) 0.00428 0.01681
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Table 3.10: Bootstrap Results for vpO for every i=l,2,...,n

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 3.12643 1.21007 -1.91636 5.04278 3.83271 7.23022

Pl 0.05427 0.03119 -0.02308 0.07735 0.04616 0.18082

Pem 0.26849 0.10251 -0.16598 0.43447 0.33196 0.60072

Pbs 0.01783 0.00467 -0.01316 0.03100 0.02633 0.04416

Pme 0.05267 0.01503 -0.03764 0.09031 0.07529 0.12796

Pm 0.58908 0.22561 -0.36347 0.95255 0.72694 1.34029

Pener 0.00452 0.00467 0.00016 0.00436 -0.00031 0.03480

Average (u) 0.31296 0.53852

Variance(u) 0.00528 0.02073
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Table 3.11: Bootstrap Results for U|=0 for every i=l,2,...,n

Point

Estimates

Average

Bootstrap

Estimate Bias

Bias

Corrected

Estimates

95% confidence interval 

for the Bias Corrected 

Estimates

Intercept 2.813462 2.785478 0.027984 2.785478 2.501476 3.132848

Pl 0.054274 0.029511 0.024763 0.029511 0.004748 0.086473

Pem 0.268491 0.27704 -0.00855 0.27704 0.231737 0.285858

Pbs 0.017834 0.024376 -0.00654 0.024376 0.017074 0.030918

Pme 0.05267 0.067106 -0.01444 0.067106 0.042277 0.081543

Pm 0.589083 0.600621 -0.01154 0.600621 0.534427 0.636425

Pener 0.004515 -0.00353 0.008043 -0.00353 -0.01157 0.029535

Variance(v) 0.00528 0.02081
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Table 3.12: Data

obs V 1 em bs me me ener

1 8.2572 0.044045 0.014848 0.001427 0.25796 4.1684 0.03118

2 7.1181 0.023669 0.007101 0.000506 0.20237 4.083 0.03286

3 5.3844 0.021087 0.016471 0.000541 0.15661 2.1395 0.00718

4 8.7708 0.045719 0.01219 0.000966 0.22014 4.7153 0.0201

5 5.9327 0.022092 0.016479 0.000515 0.16738 2.5902 0.00686

6 5.5128 0.01977 0.014464 0.000579 0.13482 2.4787 0.008

7 6.3889 0.027221 0.023846 0.000538 0.17822 2.2152 0.00635

8 17.7167 0.042334 0.048168 0.000749 0.35834 10.4651 0.02789

9 4.4072 0.008297 0.020087 0.000493 0.09563 0.9293 0.00121

1 0 3.9262 0.017605 0.011232 0.000393 0.10792 1.7552 0.0072

1 1 9.2876 0.04034 0.016513 0.000728 0.2317 4.7781 0.01976

12 3.7374 0.012647 0.007549 0.000371 0.07814 1.9261 0.00284

13 5.8745 0.024932 0.011184 0.000885 0.1802 3.169 0.02067

14 8.4058 0.031226 0.020374 0.000734 0.21677 4.0254 0.01463

15 11.3526 0.04681 0.020047 0.001285 0.33154 5.503 0.03144

16 11.815 0.040276 0.017812 0.001051 0.24163 6.0035 0.02718

17 10.4075 0.036487 0.017825 0.001086 02094 5.6884 0.01876

18 13.8676 0.046924 0.017181 0.001041 0.28718 7.0584 0.04122

19 15.1141 0.031077 0.013068 0.001136 0.43197 9.2702 0.10789
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20 5.3115

21 7.15

22 6.4034

23 9.6275

24 7.2206

25 8.7361

26 9.2734

27 3.019

28 10.7881

29 2.689

30 4.8364

31 6.5414

32 5.3512

33 5.7122

34 10.8546

35 5.2859

36 10.0225

37 7.4102

38 4.7141

39 7.6928

40 3.5574

41 10.8181

0.030318 0.011091

0.026391 0.018379

0.026999 0.020363

0.034741 0.020719

0.028344 0.020994

0.049867 0.013417

0.033049 0.0191

0.01141 0.004288

0.035422 0.013962

0.014171 0.007846

0.025912 0.0142

0.022855 0.020534

0.016928 0.007712

0.02223 0.017085

0.05131 0.018716

0.018891 0.008696

0.037233 0.019894

0.026747 0.011614

0.02104 0.009835

0.033601 0.018907

0.022131 0.011065

0.056375 0.019446

0.001111 0.21364

0.000629 0.19245

0.000856 0.17705

0.000879 0.24166

0.000596 0.18535

0.001127 0.23175

0.000746 0.15388

0.00035 0.06526

0.000711 0.1446

0.000319 0.10184

0.00053 0.1689

0.000515 0.15037

0.000842 0.1094

0.000636 0.16363

0.001019 0.25026

0.000518 0.14123

0.001045 0.2308

0.000708 0.16284

0.000504 0.13538

0.000759 0.18576

0.000423 0.09209

0.001157 0.34648

2.3552 0.01828

3.1956 0.0151

2.531 0.00579

5.0341 0.0135

3.4894 0.01097

4.5963 0.02217

4.72 0.01333

1.7887 0.02228

6.2015 0.01554

1.1323 0.00602

1.8446 0.00481

2.7226 0.00981

2.7275 0.0105

2.2301 0.00731

4.9404 0.01831

3.1663 0.01635

4.8511 0.02604

3.7284 0.02129

2.3499 0.01536

3.4622 0.01474

1.4362 0.00571

5.0809 0.03657
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42 6.78 0.028459 0.011136 0.000994 0.1099 4.0206 0.00822

43 10.0773 0.048212 0.01739 0.000985 0.28077 4.8329 0.01991

44 9.822 0.026881 0.017154 0.000801 0.28424 5.3972 0.04413

45 6.1665 0.026337 0.014772 0.000836 0.16238 2.9833 0.0163

46 4.7367 0.022057 0.011103 0.00046 0.24948 1.8513 0.00598

47 10.1611 0.04347 0.018945 0.000712 0.23755 4.2401 0 02136

48 8.5364 0.023504 0.016322 0.000744 0.16075 4.9492 0.0301

49 7.4723 0.031352 0.012675 0.000843 0.22872 3.3199 0.04817

50 8.7849 0.036621 0.017508 0.000976 0.20659 4.2414 0.01719

51 4.1237 0.011073 0.004498 0.000366 0.16799 2.4042 0.02559

average 7.70497 0.02993 0.01560 0.00076 0.19649 3.81934 0.01961

standard

deviation 3.11636 0.01147 0.00659 0.00027 0.07460 1.89792 0.01666
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APPENDIX 3.1

From the solution of (3.4) we get for firm i: 

y,- = A  + A * U  + - +A xu  +v(. -u ,  . (3.24)

From b-th bootstrap we get for firm i:

y,- = K b  +A.bxi.i +~ + K jbxijk + * a  (3.25)

The average over all the bootstrap replications is

y i  =  K j b  • + A j b x i,\ +  •••+ K j > x i,k +  v ijb -  “ ij> (3-26)

If we subtract (3.23) from (3.25) we get

0 = ~  A i ) '  + (A j>  ~A  )xi,l + — + (A Jb ~  A  )x ijt + (Vijb ~  ) ~  ($ij> ~ “/) (3-27)
which can be re-written as

0 = biasgf /?q ) + biasBf fi\ )xi X +... + hiasB( )xiJc + biasBf  v, ) -  biasBfu ,) (3.28)

If we subtract two times (3.27) from (3.25) we get an expression for the bias corrected 

estimates.

y i  = ( A Jb ~  K j j ia s  ) '  "^ (A jb  ~  A jb ia s  )*»,1 +  ••• +  ( K j j  ~  Akjbias )x ijc ~  ̂ ij)ias ) ~  )
(3.29)

or equivalently

A  A  A

y, = K j b + A>*<,i + - + K jb x i,k + i iJb -  K b  (3.3°)

The average of the above expression over all the bootstraps for firm i becomes:

y t  = A  + A  *i,i + - + A  * u  + ~  “/ (3-31)-

110
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CHAPTER 4: A BOOTSTRAP PROCEDURE TO CAPTURE UNIT SPECIFIC

Ef f e c t s  In  Da t a  E n v el o pm e n t  a n a l y s is

4.1 Introduction

One major drawback of Data Envelopment Analysis (DEA) is that it is non- 

statistical and the efficiency score obtained for an individual Decision Making Unit (DMU) 

is a point estimate without any confidence interval around it. In recent years, researchers 

have resorted to bootstrapping (e.g. Simar (1992, 1996), Simar and Wilson (1997a, 1997b) 

among others) in order to generate empirical distributions of efficiency scores from repeated 

applications of DEA after resampling. The essential procedure is to pool the efficiency 

measures obtained from the actual data and then randomly sample with replacement from 

this pool to construct pseudo-data on inputs (or outputs) for the DMUs. These artificial data 

on inputs (outputs) are associated with actual output (input) data for another round of DEA. 

Repeating this procedure a large number of times generates large enough samples of 

efficiency scores for each DMU. Then one can look at the mean and the variance of each of 

the empirical distributions o f  efficiency.

While this procedure is quite appealing and is gaining wide acceptance, in a sense, it 

goes to the other extreme by assuming that all DMUs have the same probability of getting an 

efficiency score from any specified interval within the [0,1] range. This reduces efficiency to 

a purely random variable and there would be little point in talking of the efficiency of one 

DMU relative to the others. In reality, however, some DMUs are more likely to be rated at a

111
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higher efficiency level than other DMUs. There usually are systematic factors that contribute 

to differences in efficiency. The existing bootstrapping procedures do not consider the 

possibility that the distributions o f efficiency conditional on unit specific factors may differ 

across DMUs. One can argue in favor of including these factors within the scope of the DEA 

model itself so that the remaining variation in efficiency can be justifiably attributed to 

purely random factors. However, inclusion of these factors as non-discretionary inputs 

within the DEA model automatically extends the disposability property (weak or strong) to 

such variables. This is not a realistic assumption in many situations. This is one reason why 

researchers often regress DEA efficiency scores on a number of explanatory variables to 

adjust for environmental factors and they do not include these factors in the DEA model 

itself (e.g. Ray(1991), McCarty and Yaisawamg (1993)).

The essay in this chapter proposes a bootstrap procedure that empirically generates 

the conditional distribution of efficiency for each individual DMU. The principal innovation 

in this study is that instead of resampling directly from the pooled DEA scores, we first 

regress these scores on a set of explanatory variables not included at the DEA stage and we 

bootstrap the residuals from this regression. These pseudo-efficiency scores incorporate the 

systematic effects of unit-specific factors along with the contribution of the randomly drawn 

residual.

This chapter is organized as follows. In section 42. we set up the DEA model and the 

regression of the technical efficiency on the unit-specific factors. Section 4.3 describes the 

two-step bootstrap procedure and differentiates it from the one-step bootstrap. Section 4.4
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reports the findings from an empirical application using data from Connecticut public

schools. Finally, the last section summarizes the developed methodology.

4.2 DEA and Regression models

Consider an industry producing a vector of m outputs, y=(yi, yz, —,y j ,  from a vector

o f k  inputs, x=(xt, x3 .... x j .  Let the vectors x1 and y' represent, respectively, the input and

output bundles of the i-th firm or decision making unit (DMU). Suppose that the input-output

data are observed for it DMUs. As shown in section (1.4), the output-oriented technical

efficiency of the j-th firm under variable returns to scale (VRS) can be computed by solving

the linear programming (LP) problem:

max
n

s i .  for t = 1,2,..., m
«=i

Z ^ x '  ^  x { ; fors = l,2 ,...,k  (4.1)
i=i
n
1 4  = i;
(=i
A.j > 0  for i =  l,2,...,n.

The technical efifrciency for the j-th firm will be the inverse o f

j = T -  (4 2)

When fa is equal to 1, the technical efBciency is equal to I, i.e. the firm is 100% efficient. If

fa is greater than 1, then the firm is technically inefficient and the technical efficiency

measure is less than 1.
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DEA models lead to measures of technical efficiency that are point estimates and 

therefore lack statistical properties. This problem has been addressed with the use of 

bootstrap methods. Simar (1992, 1996) and Simar and Wilson (1997a, 1997b) set the 

foundation of consistent use of bootstrapping to generate empirical distributions of 

efficiency scores. This method has been described in section 1.6. The problem with 

bootstrapping the technical efficiency measures is the assumption that all DMUs have the 

same probability of getting an efficiency score from any specified interval within the (0-1) 

range. There usually are systematic factors that contribute to differences in efficiency and 

can lead to different technical efficiency scores. For example, for an inter-country analysis of 

manufacturing production it is not sensible to conceptualize a data generating process where 

Germany and Ethiopia have the same probability of getting efficiency scores in excess of 

0.975. The existing bootstrapping procedures do not consider the possibility that the 

distributions of efficiency conditional on unit specific factors may differ across DMUs. One 

can argue in favor of including these factors within the scope of the DEA model itself so that 

the remaining variation in efficiency can be justifiably attributed to purely random factors. 

However, inclusion of these factors as non-discretionary inputs within the DEA model 

automatically extends the disposability property (weak or strong) to such variables. This is 

not a realistic assumption in many situations. For example, in the study for Connecticut 

schools that is later presented in this chapter, proportion of minorities in the student 

population and parental education are socioeconomic conditions in the home-life of a pupil. 

These variables can influence the students, but a researcher cannot assume that free 

disposability is applicable. This is one reason why researchers often regress DEA efficiency
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scores on a number of explanatory variables to adjust for environmental factors; they do not 

include these factors in the DEA model itself.

Let the vector z‘ represent such characteristics of the i-th firm. A regression permits 

us to determine the proportion of the technical efficiency that is due to these characteristics 

and the proportion that is due to random error.

(jh = a  + z' y + uj, (4.3)

where (a+zy) is the component of technical efficiency that varies systematically with the

DMU characteristics and u,- is the random shock. If we estimate the above regression with

Ordinary Least Squares, some of the estimated <|>(=d + z ‘y)s may be less than I, or 

equivalently (<j> -1) < 0 , which violates the natural restriction on efficiency. As we get a 

consistent estimate of <{> and y , we can adjust the estimated technical efficiency

- l = + i - m i n { < f r j } > 0 ,  (4 .4 )

or, equivalently,

-1  = a  + z‘y -  min{a + zJy} = 
j

=[z*-min{zJ}]y=> (4.5)

<j>i = l + [z‘ -min{zJ}]y.
j

Now the adjusted error term, u , , will be
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Now bootstrap from the estimated sample of uj s.

43 A Two Step Bootstrap Procedure

The bootstrap algorithm that generates the distribution of efficiency for each 

individual DMU, conditional on unit specific factors, can be described as follows:

i) For each DMU / compute <)» from the DEA model in (4.1), for r= 1,2,.. .,n.

ii) Regress on the DMU characteristics Zi and adjust them using (4.5)

iii) Calculate the residuals Uf =<t>i — for each i= 1,2,. - >n (as shown in (4.4) to (4.6)).

iv) Select the b-th (6=7,2,...,5) independent bootstrap sample Ub = {uib»^2b»—*Onb) * 

which consists of n data values drawn with replacement from the observed sample 

u = {u ,,u2,...,un }.

v) Generate the smoothed bootstrap sample

u £  = u*b +hSi; S j~ N ( 0 ,l )  for i = 1,2,..., n

where h is the smoothing parameter. Following Silverman (1986) we can select the 

value o f the window width that minimizes the approximate mean integrated square 

error, i.e. h is equal to: 

h = 0.9A n ia.
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where A = min ("standard deviation of u , interquartile range of H/1.34),

vi) Create the b-th pseudo sample (x',yb'*) i= 1 ,2,... 41, where

Yb = (y ' and K b = a  + z Iy + u £  for i = l,2 ,...,n

vii) Solve the DEA model for each DMU / in (4.1) using the b-th pseudo-data set to

obtain new values for K b  f=I,2,...,n.

viii) Repeat steps (iv)-(vii) B-times to obtain the maximum producible output for each

DMU /, (r=l,2,...,n):

y[b= yb  K b; b = l,2,...,B . (4.7)

ix) Calculate the average o f the bootstrap estimates of yf s, the bias and the confidence

intervals.

Note that we are constructing confidence intervals for the maximum producible 

output from the input bundles of each firm through bootstrap and not for the technical 

efficiency score as is common in the literature. The usual procedure (e.g. Simar and Wilson,

1992, 1995) is to first obtain bootstrap estimates for the ^  s and then to multiply them by the

observed output level, i.e.

y,f*b=y' K b; *» = 1A - ,B ;  i = l,2 ,...,n (4.8)

The problem with this approach is that it ignores the fact that the bootstrap measure of 

technical efficiency is calculated with respect the pseudo-output and not the actual output. 

While the actual level of output remains the same, the pseudo-output level changes in
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different replications of the pseudo-data. The two methods of calculation generate different 

empirical distributions of the maximum output producible from the observed input bundle.

The average of the bootstrap estimate for unit / is:

^ i f = ^ H b : i  = I n - <4-9>B b=l

We can now calculate the bias, bias-corrected estimates and construct confidence 

intervals for each of the estimated parameters. The estimated bias of the bootstrap estimated 

parameters based on B replications is

biasB(<J)i ) = ^i -(fc; i = l,2,...,n, and (4.10a)

biasB(yif ) = yjf - y 4f ; i = l,2,...,n. (4.10b)

The standard error of each of the estimated technical efficiency and maximum 

output are measured as

1 ■ * \ 2 .  • iseB(<l>i ) = J-r—r Z ^ k .b -fo e ) ; i = lA .. . ,n f and (4.11a)
V B ~ 1 b=i

seB(yf)  = J ~ ~ r £ ( y f b  - y f )2 ’ i = lA - . , n .  (4.11b)
YB - l b=l ’

The bias-corrected estimated parameter will be given by the formulas:
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<h — biasBC4»i) = 2<t»| j = l,2,...,n, (4.12a)

Y\ =y\ - b ia s B(yjf ) = 2yif - y f ;  i = l,2,...,n. (4.12b)

Finally, we can construct confidence intervals for the estimates of <p and y. First, we

* * * t*
must adjust the estimates o f $  and y  from each bootstrap <j>i b, and y; b (b = 1,2,..., B) such

that they are centered around their bias-corrected estimates. Accordingly, the adjusted 

estimate from each bootstrap will be

(4.13a)
‘fri.b =<t>i,b -2 b iasB(<|>j); b = l,2,...,B; i = l,2,...,n , and

*.\b =y[b - 2 b i a s e d ) ;  b = l,2,...,B; i = l,2 n . (4 l3b>

Once we have calculated the adjusted estimates we can use the percentile method to 

construct confidence intervals with length (l-2a)% for the technical efficiency score of each 

DMU as

rO -a )v :_ i  „ (4.14a)(*Pj t t  j )’ i -1,2,..., n ,

where <j>*̂  and is the (100*ath) and (I00*(l-a)*) percentiles of the empirical

density of (b = l,2,...,B) for each i = 1,2,..., n . Similarly, the (l-2a)% confidence

intervals for the maximum producible output for each DMU as

(jfW .jW -a)) ;  i = U , ( 4 . 1 4 b )
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4.4 A Study of Connecticut Public Schools

In our empirical application, data from 118 school districts for the school year 1995- 

1996 have been used to evaluate efficiency of individual districts. A single output measured 

by the average score in the Scholastic Aptitude Test (SAT) is used as a measure of output of 

a school district. This test consists of a verbal and a mathematical part, each with a 

maximum score of 800 points. In spite of the fact that people have expressed reservations 

about the appropriateness of the SAT score as an index of cognitive skills acquired by a 

pupil, in the absence of any nation-wide tests, it has emerged as the most important yardstick 

of performance by school districts. The school inputs included are (i) regular instruction 

teachers, (ii) special education teachers, (iii) support staff (like counselors), (iv) 

administrators, (v) computers, and (vi) total instruction hours during the school year. All 

personnel inputs are measured as full-time equivalent units per pupil. Computers are also 

measured as units per pupil.

It is widely agreed that productivity and efficiency of school inputs depend critically 

on the socioeconomic conditions in the home-life o f a pupil. In the present study, we include 

race and parental education as two significant factors. A higher proportion of minorities in 

the student population reflects disadvantaged socioeconomic background of the average 

student and is expected to lower efficiency of the school inputs of the district. On the other 

hand, a higher proportion of college graduates among the adults in the population district is 

an indicator of a higher educational level of the parents of the average student and is 

expected to enhance efficiency. Table 4.1 summarizes the basic statistics of the variables 

used in this study. The complete data set is in Table 4.9 of this chapter.
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In the two-level bootstrap procedure we start with the output oriented DEA model 

for the variable returns to scale technology using only the school inputs. These DEA scores 

and the corresponding m axim um  producible output are shown in Table 4.2. Of the 118 

School districts, 23 were rated efficient. On the other hand, large urban districts showed 

large potential increase in the average SAT scores- by 39% in Bridgeport, 32.51% in 

Hartford, and 35.68% in New Haven. Given that these are also the districts with the highest 

proportion of non-whites and also low percentage of college graduates in the districts, such 

findings are not surprising.

Next we regress these scores on the socioeconomic characteristics of race and 

parental education:

(J>i = a  + yi BAj + y2 MINOi + Uj, (4.15)

The Ordinary Least Squares results are shown in Table 4.3. As anticipated, higher proportion 

of minorities (MINO) in the student population leads to higher <|> s and thus lower efficiency 

of the school. On the other hand, a higher proportion of college graduates among the adults 

in the population district (BA) leads to lower <(> s and thus improves the efficiency of the 

school.

Before we proceed with the bootstrap procedure, we adjusted the expected <|> s and 

the corresponding residuals using (4.4) to (4.6). The bootstrap samples are drawn from these 

residuals and we apply the bootstrap algorithm presented in the previous section. The 

bootstrap procedure was repeated 600 times. Table 4.4 reports the results from the bootstrap 

for the maximum producible output and Table 4.5 reports the results for the inverse of 

technical efficiency scores. The first column of these tables contains the name of the school
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district. The columns 2-6 present results on the maximum producible output as it is estimated 

from the DEA model, the bootstrap average, the standard deviation of the bootstrap average, 

the bias o f the bootstrap average and the bias corrected estimate respectively. The last two 

columns give the lower and upper limit of the 95% confidence interval for the bias-corrected 

values. We can compare the actual performance of a school district with the potential one by

2 r
comparing the bias-corrected maximum producible output, y  x , from Table 4.4 with the

observed output, y, in Table 4 .2 .1

For comparison, an extended DEA model incorporating the socioeconomic variables 

was solved for each district to generate an alternative set o f <{> s. The results from the 

extended DEA model are shown in the last 3 columns of Table 4.2. The two sets of <|> s 

obtained from the DEA models have correlation equal to 0.65. This time the DEA with all 

data resulted in optimal score equal to unity in 54 of the 118 school districts. Bridgeport and 

Hartford were found to be 100% efficient, while New Haven, which is also a disadvantaged 

community, has potential increase in the average SAT score by 24.61%, which is lower than 

previously.

Tables 4.6 and 4.7 are similar to tables 4.4 and 4.5 and report the results for the 

m axim um  producible output and the inverse o f technical efficiency scores respectively. The 

correlation between the bias-corrected estimates of the maximum producible output is now 

only 0.21. The bias corrected estimates originated from the extended DEA model are all

1 It is possible the observed output to be higher than the upper bound of the 95% confidence 
interval.
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higher than the bias-corrected estimates generated through the bootstrap conditional on the 

socioeconomic characteristics.

In Table 4.8 we compare the alternative procedures for 6 selected school districts. 

Three of them- Bridgeport, Hartford and New Haven- are large urban districts and the other 

three -Avon, Glastonbury, and Simsbury- are, by contrast, affluent suburban districts. The 

alternative procedures yield comparable results for the suburban districts. On the other hand, 

large differences can be found for the poorer urban districts. The conventional bootstrap 

approach suggests that these urban districts can achieve higher SAT scores. This reinforces 

the belief for example, that Hartford is a poorly managed district Our results suggest 

however that given the socioeconomic disadvantages in the homelife of an average student, 

this district is performing even better than what could be expected. The optimum SAT score 

from the bias corrected column is lower than the observed one.

4 i  Conclusion

Researchers use bootstrap as a way to generate empirical distributions of efficiency 

scores from DEA models. The existing bootstrap procedures assume that all DMUs have the 

same probability of getting an efficiency score. However, there are usually systematic factors 

that contribute to efficiency. In this chapter an alternative bootstrap technique is developed 

that generates distributions of efficiency scores conditional on such factors. One might argue 

in favor of including them in the DEA model, but this might violate the free disposability 

assumptions. Also, as we have shown with the empirical application, the two-level method
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leads to results that are more consistent with these systematic factors than the conventional 

method.
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Table 4.1: Summary Statistics of the Data

Description Mean St. Deviation

Output:

Average SAT Score 1017.59 70.45

Inputs:

(i) regular instruction teachers per pupil 0.06213 0.00697

(ii) special education teachers per pupil 0.00944 0.00195

(iii) support staff (like counselors) per pupil 0.00557 0.00147

(iv) administrators per pupil 0.00531 0.00168

(v) computers per pupil 0.13219 0.04563

(vi) total instruction hours during the school year 972.03 29.13

Socio-economic variables:

(i) proportion of minorities in the school district 14.06 % 20.01

population

(ii) proportion of adults with a college degree in the 41.03% 19.73

school district population

Sourse: Profiles of our Schools. Condition of Education in Connecticut 1995-1996,

Connecticut State Board o f Education, February 1997.
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Table 4.2: Output Oriented Technical Efficiency

DEA without socio- DEA with socio-economic 

economic factors factors

School District SAT SAT* = SAT * <j>° ^  SAT* = SAT * <j>'

ANSONIA 962 1.0326 993.40 1.0326 993.40

AVON 1133 1.0000 1133.00 1.0000 1133.00

BERLIN 987 1.1321 1117.40 1.0732 1059.22

BETHEL 1051 1.0644 1118.65 1.0513 1104.89

BLOOMFIELD 886 1.2306 1090.32 1.1583 1026.22

BOLTON 1078 1.0000 1078.00 1.0000 1078.00

BRANFORD 1027 1.0000 1027.00 1.0000 1027.00

BRIDGEPORT 782 1.3924 1088.83 1.0000 782.00

BRISTOL 1004 1.0620 1066.21 1.0000 1004.00

BROOKFIELD 1053 1.0343 1089.08 1.0343 1089.08

CANTON 1061 1.0187 1080.79 1.0000 1061.00

CHESHIRE 1063 1.0638 1130.77 1.0570 1123.58

CLINTON 1028 1.0787 1108.93 1.0606 1090.31

COLCHESTER 1019 1.0000 1019.00 1.0000 1019.00

COVENTRY 1031 1.0831 1116.64 1.0263 1058.08

CROMWELL 987 1.1236 1108.99 1.0997 1085.36

DANBURY 956 1.1018 1053.31 1.0795 1032.00
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DARIEN 1121 1.0000 1121.00 1.0000 1121.00

DERBY 914 1.0031 916.80 1.0000 914.00

EAST GRANBY 1065 1.0000 1065.00 1.0000 1065.00

EAST HADDAM 1036 1.0386 1076.00 1.0294 1066.46

EAST HAMPTON 997 1.0537 1050.54 1.0393 1036.21

EAST HARTFORD 973 1.0316 1003.78 1.0009 973.87

EAST HAVEN 908 1.1324 1028.25 1.0262 931.76

EAST LYME 1068 1.0346 1104.95 1.0116 1080.44

EAST WINDSOR 963 1.1192 1077.79 1.0000 963.00

ELLINGTON 1050 1.0731 1126.72 1.0418 1093.88

ENFIELD 1011 1.0232 1034.45 1.0000 1011.00

FAIRFIELD 1068 1.0564 1128.25 1.0448 1115.82

FARMINGTON 1092 1.0000 1092.00 1.0000 1092.00

GLASTONBURY 1074 1.0161 1091.25 1.0000 1074.00

GRANBY 1097 1.0150 1113.50 1.0033 1100.64

GREENWICH 1078 1.0588 1141.41 1.0465 1128.13

GRISWOLD 964 1.1114 1071.36 1.0000 964.00

GROTON 1037 1.0341 1072.41 1.0005 1037.47

GUILFORD 1073 1.0354 1111.01 1.0326 1107.95

HAMDEN 962 1.1372 1093.96 1.1339 1090.85

HARTFORD 777 1.3251 1029.62 1.0000 777.00

KTLLINGLY 992 1.1189 1109.93 1.0000 992.00
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LEBANON 1036 1.1016 1141.30 1.0000 1036.00

LEDYARD 1045 1.0869 1135.84 1.0466 1093.73

LITCHFIELD 1077 1.0330 1112.59 1.0000 1077.00

MADISON 1087 1.0356 1125.66 1.0000 1087.00

MANCHESTER 1000 1.0740 1073.99 1.0570 1056.96

MERIDEN 946 1.0940 1034.96 1.0000 946.00

MIDDLETOWN 961 1.1481 1103.35 1.0823 1040.10

MILFORD 973 1.1340 1103.43 1.0971 1067.45

MONROE 1007 1.0317 1038.93 1.0293 1036.53

MONTVTLLE 1007 1.0900 1097.64 1.0309 1038.12

NAUGATUCK 928 1.0134 940.42 1.0000 928.00

NEW BRITAIN 909 1.1070 1006.26 1.0771 979.11

NEW CANAAN 1129 1.0029 1132.32 1.0000 1129.00

NEW FAIRFIELD 1048 1.0000 1048.00 1.0000 1048.00

NEW HAVEN 789 1.3568 1070.52 1.2461 983.17

NEW INGTON 1032 1.0769 1111.35 1.0231 1055.85

NEW LONDON 893 1.2541 1119.93 1.1346 1013.22

NEW MILFORD 1058 1.0000 1058.00 1.0000 1058.00

NEWTOWN 1065 1.0075 1072.94 1.0000 1065.00

NORTH BRANFORD 1002 1.0583 1060.37 1.0000 1002.00

NORTH HAVEN 999 1.1209 1119.81 1.0837 1082.57

NORTH STONINGTON 1061 1.0281 1090.83 1.0000 1061.00
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NORWALK 943 1.1452 1079.96 1.0897 1027.56

OLD SAYBROOK 1052 1.0304 1084.03 1.0296 1083.18

PLAINFIELD 975 1.1202 1092.16 1.0000 975.00

PLAINVILLE 990 1.0630 1052.33 1.0000 990.00

PLYMOUTH 983 1.0871 1068.64 1.0122 994.95

PORTLAND 1033 1.1017 1138.05 1.0605 1095.46

PUTNAM 986 1.1008 1085.43 1.0320 1017.60

RIDGEFIELD 1130 1.0000 1130.00 1.0000 1130.00

ROCKY HILL 1011 1.0819 1093.81 1.0676 1079.37

SEYMOUR 975 1.0000 975.00 1.0000 975.00

SHELTON 982 1.0004 982.38 1.0000 982.00

SIMSBURY 1140 1.0000 1140.00 1.0000 1140.00

SOMERS 1017 1.0588 1076.85 1.0000 1017.00

SOUTHINGTON 993 1.1260 1118.12 1.0998 1092.09

SOUTH WINDSOR 1051 1.0210 1073.04 1.0210 1073.04

STAFFORD 1080 1.0000 1080.00 1.0000 1080.00

STAMFORD 950 1.1514 1093.83 1.0887 1034.30

STONINGTON 1034 1.0108 1045.20 1.0000 1034.00

STRATFORD 948 1.1535 1093.52 1.1127 1054.85

SUFFIELD 1026 1.0369 1063.90 1.0339 1060.83

THOMASTON 937 1.0000 937.00 1.0000 937.00

THOMPSON 1060 1.0000 1060.00 1.0000 1060.00
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TOLLAND 1089 1.0000 1089.00 1.0000 1089.00

TORRINGTON 970 1.0712 1039.08 1.0519 1020.31

TRUMBULL 1029 1.0327 1062.70 1.0327 1062.70

VERNON 1036 1.0712 1109.76 1.0499 1087.73

WALLINGFORD 968 1.0077 975.43 1.0000 968.00

WATERBURY 856 1.0000 856.00 1.0000 856.00

WATERFORD 1033 1.1048 1141.30 1.0603 1095.31

WATERTOWN 1000 1.0227 1022.69 1.0159 1015.87

WESTBROOK 1024 1.0489 1074.07 1.0489 1074.05

WEST HARTFORD 1070 1.0000 1070.00 1.0000 1070.00

WEST HAVEN 935 1.0000 935.00 1.0000 935.00

WESTON 1110 1.0011 1111.25 1.0000 1110.00

WESTPORT 1139 1.0023 1141.63 1.0000 1139.00

WETHERSFIELD 1012 1.1099 1123.21 1.0990 1112.15

WILTON 1142 1.0000 1142.00 1.0000 1142.00

WINDHAM 992 1.1422 1133.03 1.0557 1047.23

WINDSOR 989 1.1086 1096.42 1.0906 1078.57

WINDSOR LOCKS 1008 1.0000 1008.00 1.0000 1008.00

WOLCOTT 942 1.1147 1050.06 1.0475 986.79

RD1 1005 1.0883 1093.69 1.0589 1064.17

RIM 1053 1.0814 1138.68 1.0518 1107.55

RD5 1080 1.0471 1130.87 1.0375 1120.53
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RD6 1116 1.0201 1138.41 1.0000 1116.00

RD7 1089 1.0384 1130.79 1.0000 1089.00

RD8 1096 1.0385 1138.24 1.0006 1096.67

RD9 1090 1.0222 1114.22 1.0000 1090.00

RD10 1049 1.0827 1135.79 1.0460 1097.25

RD11 1014 1.1262 1142.00 1.0797 1094.79

RD12 1010 1.0997 1110.66 1.0871 1097.99

RD13 1039 1.0588 1100.05 1.0515 1092.47

RD14 1002 1.0000 1002.00 1.0000 1002.00

R015 1028 1.0572 1086.83 1.0516 1081.01

RD17 1049 1.0702 1122.67 1.0514 1102.94

RD18 1117 1.0108 1129.03 1.0000 1117.00

RD19 1119 1.0000 1119.00 1.0000 1119.00

Average 1017.59 1.0649 1080.13 1.0314 1048.35
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Table 43: OLS Results

Parameter Estimate Standard Error t-ratio

Intercept 1.0676 0.0133 80.1390

BA -0.0008 0.0003 -3.0810

Minority 0.0021 0.0003 8.3550

R2 = 52.12% 

n = 118
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Table 4.4: Bootstrap results for Maximum Producible Output

School District y,f ySf seB(y[) : f
yi

95%

lower

limit

95%

upper

limit

ANSONIA 993.40 1046.79 94.21 53.39 940.01 858.90 956.74

AVON 1133.00 1120.33 119.05 -12.67 1145.67 951.76 1053.80

BERLIN 1117.40 1351.44 82.88 234.04 883.36 790.91 871.26

BETHEL 1118.65 1231.22 101.40 112.57 1006.08 945.13 1035.01

BLOOMFIELD 1090.32 1455.13 59.61 364.81 725.51 672.40 740.81

BOLTON 1078.00 1065.53 110.82 -12.47 1090.47 963.03 1077.24

BRANFORD 1027.00 1006.73 103.07 -20.27 1047.27 928.50 1008.51

BRIDGEPORT 1088.83 1610.31 42.78 521.49 567.34 529.53 569.55

BRISTOL 1066.21 1170.80 93.79 104.59 961.63 861.42 953.44

BROOKFIELD 1089.08 1146.81 95.97 57.72 1031.36 871.56 965.03

CANTON 1080.79 1106.62 110.59 25.83 1054.96 965.87 1082.90

CHESHIRE 1130.77 1254.35 96.93 123.58 1007.20 911.63 1014.52

CLINTON 1108.93 1250.34 93.21 141.41 967.52 842.98 924.62

COLCHESTER 1019.00 999.14 109.08 -19.86 1038.86 830.15 915.98

COVENTRY 1116.64 1269.82 94.24 153.18 963.46 908.12 1002.71

CROMWELL 1108.99 1326.28 82.50 217.29 891.70 778.37 859.62

DANBURY 1053.31 1231.93 78.66 178.63 874.68 786.45 858.72
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DARIEN 1121.00 1105.84

DERBY 916.80 907.62

EAST GRANBY 1065.00 1052.69

EASTHADDAM 1076.00 1145.76

EAST HAMPTON 1050.54 1146.77

EAST HARTFORD 1003.78 105428

EAST HAVEN 1028.25 1244.84

EAST LYME 1104.95 1163.49

EAST WINDSOR 1077.79 1285.17

ELLINGTON 1126.72 1259.87

ENFIELD 1034.45 1065.86

FAIRFIELD 112825 1230.30

FARMINGTON 1092.00 1077.17

GLASTONBURY 1091.25 1106.25

GRANBY 1113.50 1131.73

GREENWICH 1141.41 1259.84

GRISWOLD 1071.36 1270.97

GROTON 1072.41 1131.40

GUILFORD 1111.01 1170.33

HAMDEN 1093.96 1332.57

HARTFORD 1029.62 1467.84

KILLINGLY 1109.93 1326.33

134

118.11 -15.16 1136.16 1077.56 1198.61

95.85 -9.18 925.98 825.29 920.97

109.90 -12.31 1077.31 911.98 1009.20

96.46 69.77 1006.23 906.45 996.10

95.78 96.23 954.32 880.85 983.02

98.26 50.51 953.27 838.58 939.94

71.30 216.59 811.66 692.24 761.35

107.43 58.54 1046.41 871.13 972.21

73.97 207.38 870.41 848.63 916.26

95.48 133.15 993.57 881.63 967.88

95.97 31.41 1003.03 1063.59 1155.93

97.03 102.05 1026.20 960.07 1055.47

115.10 -14.83 1106.83 1010.31 1111.77

105.52 15.01 1076.24 1058.10 1164.21

115.83 18.23 1095.26 1013.42 1127.12

104.05 118.44 1022.97 919.66 1028.95

7825 199.62 871.74 775.24 848.79

103.81 58.99 1013.42 925.63 1025.09

101.76 59.32 1051.69 873.73 960.02

81.50 238.62 855.34 764.43 848.08

45.67 438.22 591.39 493.82 531.30

78.62 216.40 893.53 814.22 894.20
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LEBANON 1141.30 1331.46 90.77 190.16 951.14 831.83 905.73

LEDYARD 1135.84 1298.07 91.04 162.23 973.61 915.89 1020.61

LITCHFIELD 1112.59 1170.53 108.79 57.94 1054.65 972.00 1086.31

MADISON 1125.66 1189.14 111.71 63.47 1062.19 789.62 881.38

MANCHESTER 1073.99 1204.68 89.55 130.70 943.29 810.00 894.62

MERIDEN 1034.96 1192.09 79.73 157.13 877.82 841.88 914.88

MIDDLETOWN 1103.35 1364.11 69.40 260.76 842.60 743.89 807.23

MILFORD 1103.43 1336.34 83.86 232.92 870.51 749.16 830.36

MONROE 1038.93 1085.23 99.80 46.30 992.63 881.82 976.80

MONTVILLE 1097.64 1260.31 89.50 162.66 934.98 809.59 901.80

NAUGATUCK 940.42 953.95 96.24 13.53 926.89 688.89 776.00

NEW BRITAIN 1006.26 1180.85 74.43 174.59 831.66 725.57 794.68

NEW CANAAN 1132.32 1130.31 110.81 -2.00 1134.32 992.57 1114.39

NEW FAIRFIELD 1048.00 1038.63 109.64 -9.37 1057.37 882.71 982.71

NEW HAVEN 1070.52 1551.98 44.88 481.46 589.06 585.26 628.78

NEW INGTON 1111.35 1253.83 94.27 142.48 968.87 782.16 878.40

NEW LONDON 1119.93 1521.99 60.16 402.06 717.87 649.55 707.22

NEW MILFORD 1058.00 1045.88 113.49 -12.12 1070.12 973.04 1085.48

NEWTOWN 1072.94 1062.07 106.08 -10.87 1083.80 947.94 1034.43

NORTH BRANFORD 1060.37 1163.10 91.10 102.73 957.63 943.68 1037.43

NORTH HAVEN 1119.81 1337.09 82.08 217.28 902.53 813.70 895.21

NORTH STONINGTON 1090.83 1135.85 101.48 45.02 1045.81 881.12 961.06
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NORWALK 1079.96 1324.23 75.01 244.27 835.69 794.39 872.09

OLD SAYBROOK 1084.03 1136.49 106.56 52.46 1031.57 981.19 1093.00

PLAINFIELD 1092.16 1297.47 84.48 205.31 886.86 820.68 884.33

PLAINVILLE 1052.33 1168.36 88.07 116.03 936.30 914.31 1004.74

PLYMOUTH 1068.64 1217.84 88.29 149.20 919.43 804.79 875.93

PORTLAND 1138.05 1327.13 88.96 189.09 948.96 799.44 879.54

PUTNAM 1085.43 1262.82 86.27 177.38 908.05 855.74 928.26

RIDGEFIELD 1130.00 1117.20 118.10 -12.80 1142.80 1044.82 1167.03

ROCKY HILL 1093.81 1249.39 92.21 155.58 938.22 822.31 914.44

SEYMOUR 975.00 961.07 104.62 -13.93 988.93 917.57 1025.80

SHELTON 982.38 971.45 98.39 -10.93 993.31 903.34 1001.99

SIMSBURY 1140.00 1121.72 119.27 -18.28 1158.28 1122.56 1226.06

SOMERS 1076.85 1184.51 93.56 107.67 969.18 855.24 951.39

SOUTHINGTON 1118.12 1345.99 76.10 227.88 890.24 839.59 908.63

SOUTH WINDSOR 1073.04 1107.23 105.66 34.19 1038.85 941.22 1050.51

STAFFORD 1080.00 1063.06 109.94 -16.94 1096.94 950.02 1064.94

STAMFORD 1093.83 1352.51 74.73 258.68 835.15 770.08 837.30

STONINGTON 1045.20 1057.85 101.36 12.65 1032.55 859.26 950.40

STRATFORD 1093.52 1354.55 73.48 261.02 832.50 760.49 827.79

SUFFIELD 1063.90 1129.27 94.78 65.37 998.53 927.46 997.22

THOMASTON 937.00 926.04 100.81 -10.96 947.96 808.64 902.57

THOMPSON 1060.00 1041.42 108.03 -18.58 1078.58 948.20 1062.51
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TOLLAND 1089.00 1071.69

TORR1NGTON 1039.08 1159.62

TRUMBULL 1062.70 1113.14

VERNON 1109.76 1246.84

WALLINGFORD 975.43 964.82

WATERBURY 856.00 841.60

WATERFORD 1141.30 1336.86

WATERTOWN 1022.69 1049.65

WESTBROOK 1074.07 1154.49

WEST HARTFORD 1070.00 1063.20

WEST HAVEN 935.00 922.58

WESTON 1111.25 1103.39

WESTPORT 1141.63 1131.92

WETHERSFIELD 1123.21 1319.60

WILTON 1142.00 1127.25

WINDHAM 1133.03 1386.68

WINDSOR 1096.42 1292.39

WINDSOR LOCKS 1008.00 995.89

WOLCOTT 1050.06 1241.13

RD1 1093.69 1254.32

RIM 1138.68 1294.57

RD5 1130.87 1213.29

137

116.83 -17.31 1106.31 935.61 1055.22

87.01 120.54 918.54 823.64 900.52

101.25 50.44 1012.26 877.52 967.56

91.83 137.08 972.68 887.38 979.18

98.52 -10.61 986.04 917.23 1011.08

85.76 -14.40 870.40 771.92 844.24

85.60 195.57 945.73 864.94 937.24

102.20 26.97 995.72 885.83 988.60

102.33 80.42 993.64 851.63 954.50

112.99 -6.80 1076.80 955.51 1063.13

97.75 -12.42 947.42 838.74 943.56

114.28 -7.85 1119.10 930.65 1040.38

114.74 -9.71 1151.34 1108.42 1226.37

86.76 196.39 926.82 822.84 900.73

114.12 -14.75 1156.75 1010.58 1106.26

82.28 253.65 879.37 781.69 868.09

81.94 195.97 900.45 806.43 887.37

97.90 -12.11 1020.11 906.59 993.86

74.80 191.06 859.00 755.95 814.78

94.79 160.63 933.07 840.14 940.33

91.48 155.90 982.78 933.77 1027.92

105.84 82.42 1048.45 997.03 1103.15
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RD6 1138.41 1164.30 111.30 25.89 1112.52 1052.94 1167.29

RD7 1130.79 1192.43 104.38 61.65 1069.14 1026.00 1117.54

RD8 1138.24 1206.90 106.12 68.67 1069.57 972.19 1071.00

RD9 1114.22 1144.58 108.67 30.36 1083.86 920.52 1019.48

RD10 1135.79 1287.03 90.48 151.24 984.55 925.34 1006.40

RD11 1142.00 1372.68 82.65 230.68 911.32 834.87 916.05

RD12 1110.66 1293.14 86.36 182.47 928.19 860.20 944.70

RD13 1100.05 1206.65 95.47 106.60 993.45 920.29 1003.56

RDM 1002.00 987.63 100.64 -14.37 1016.37 895.95 983.76

RD15 1086.83 1183.86 99.91 97.03 989.81 834.53 932.69

RD17 1122.67 1254.76 93.91 132.09 990.59 908.33 985.92

RD18 1129.03 1133.44 109.74 4.41 1124.62 1078.49 1187.20

RD19 1119.00 1097.73 126.44 -21.27 1140.27 1024.12 1138.05

Average 1080.13 1185.73 94.91 -105.59 974.54

r
y; = maximum producible output from the DEA model

-  f

y; = bootstrap average of the maximum producible output

f
seB(y| )=  standard deviation of the maximum producible output 

biasg (y i ) = bias of the maximum producible output

*  r

y; = bias-corrected estimate of die maximum producible output
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Table 4.5: Bootstrap results for <(> scores

School District ♦i ♦i seB(«t>i) biasB(fc) <l>i

95%

lower

limit

95%

upper

limit

ANSONIA 1.0326 1.0334 0.0518 0.0008 1.0319 0.9364 1.0299

AVON 1.0000 1.0015 0.0521 0.0015 0.9985 0.9093 0.9977

BERLIN 1.1321 1.1358 0.0530 0.0037 1.1284 1.0270 1.1329

BETHEL 1.0644 1.0703 0.0534 0.0059 1.0585 0.9735 1.0659

BLOOMFIELD 1.2306 1.2322 0.0513 0.0016 1.2290 1.1451 1.2261

BOLTON 1.0000 1.0019 0.0507 0.0019 0.9981 0.9033 0.9977

BRANFORD 1.0000 1.0062 0.0479 0.0062 0.9938 0.9190 1.0049

BRIDGEPORT 1.3924 1.3964 0.0523 0.0041 1.3883 1.2984 1.3951

BRISTOL 1.0620 1.0671 0.0527 0.0052 1.0568 0.9783 1.0619

BROOKFIELD 1.0343 1.0375 0.0488 0.0033 1.0310 0.9535 1.0334

CANTON 1.0187 1.0210 0.0536 0.0023 1.0163 0.9278 1.0183

CHESHIRE 1.0638 1.0642 0.0523 0.0004 1.0633 0.9718 1.0593

CLINTON 1.0787 1.0832 0.0516 0.0044 1.0743 0.9791 1.0785

COLCHESTER 1.0000 1.0056 0.0517 0.0056 0.9944 0.9082 1.0013

COVENTRY 1.0831 1.0857 0.0531 0.0026 1.0804 0.9857 1.0834

CROMWELL 1.1236 1.1284 0.0522 0.0048 1.1188 1.0242 1.1258

DANBURY 1.1018 1.1028 0.0500 0.0011 1.1007 1.0155 1.0999
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DARIEN 1.0000 1.0027 0.0521 0.0027 0.9973 0.9076 1.0002

DERBY 1.0031 1.0071 0.0521 0.0040 0.9990 0.9088 1.0042

EAST GRANBY 1.0000 1.0019 0.0509 0.0019 0.9981 0.9086 0.9980

EAST HADDAM 1.0386 1.0395 0.0504 0.0009 1.0377 0.9541 1.0362

EAST HAMPTON 1.0537 1.0542 0.0535 0.0005 1.0532 0.9655 1.0506

EAST HARTFORD 1.0316 1.0329 0.0546 0.0013 1.0303 0.9404 1.0294

EAST HAVEN 1.1324 1.1361 0.0501 0.0036 1.1288 1.0479 1.1331

EAST LYME 1.0346 1.0375 0.0536 0.0029 1.0317 0.9428 1.0319

EAST WINDSOR 1.1192 1.1226 0.0472 0.0034 1.1158 1.0357 1.1202

ELLINGTON 1.0731 1.0776 0.0507 0.0045 1.0685 0.9702 1.0766

ENFIELD 1.0232 1.0274 0.0483 0.0042 1.0190 0.9388 1.0243

FAIRFIELD 1.0564 1.0607 0.0503 0.0043 1.0521 0.9670 1.0562

FARMINGTON 1.0000 1.0028 0.0513 0.0028 0.9972 0.9054 0.9994

GLASTONBURY 1.0161 1.0216 0.0494 0.0055 1.0105 0.9299 1.0198

GRANBY 1.0150 1.0176 0.0535 0.0025 1.0125 0.9142 1.0133

GREENWICH 1.0588 1.0572 0.0542 -0.0016 1.0604 0.9573 1.0541

GRISWOLD 1.1114 1.1108 0.0505 -0.0006 1.1120 1.0249 1.1090

GROTON 1.0341 1.0356 0.0525 0.0015 1.0327 0.9342 1.0358

GUILFORD 1.0354 1.0394 0.0504 0.0040 1.0315 0.9455 1.0364

HAMDEN 1.1372 1.1395 0.0547 0.0024 1.1348 1.0312 1.1348

HARTFORD 1.3251 1.3278 0.0515 0.0027 1.3224 1.2359 1.3253

KTLI.TNGLY 1.1189 1.1200 0.0495 0.0011 1.1178 1.0333 1.1162
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LEBANON

LEDYARD

LITCHFIELD

MADISON

MANCHESTER

MERIDEN

MIDDLETOWN

MILFORD

MONROE

MONTVTLLE

NAUGATUCK

NEW BRITAIN

NEW CANAAN

NEW FAIRFIELD

NEW HAVEN

NEW INGTON

NEW LONDON

NEW MILFORD

NEWTOWN

NORTH BRANFORD

NORTH HAVEN

NORTH STONINGTON

1.1016 1.1042 0.0523

1.0869 1.0901 0.0518

1.0330 1.0349 0.0539

1.0356 1.0374 0.0546

1.0740 1.0773 0.0512

1.0940 1.0989 0.0492

1.1481 1.1490 0.0475

1.1340 1.1383 0.0548

1.0317 1.0365 0.0516

1.0900 1.0928 0.0528

1.0134 1.0154 0.0529

1.1070 1.1107 0.0495

1.0029 1.0031 0.0500

1.0000 1.0004 0.0524

1.3568 1.3626 0.0518

1.0769 1.0789 0.0533

1.2541 1.2559 0.0528

1.0000 1.0015 0.0536

1.0075 1.0163 0.0491

1.0583 1.0606 0.0508

1.1209 1.1245 0.0513

1.0281 1.0314 0.0494

141

0.0025 1.0991 1.0064 1.1038

0.0032 1.0837 1.0000 1.0859

0.0018 1.0312 0.9359 1.0310

0.0019 1.0337 0.9325 1.0314

0.0033 1.0706 0.9858 1.0742

0.0049 1.0891 1.0117 1.0989

0.0009 1.1472 1.0636 1.1460

0.0043 1.1298 1.0312 1.1343

0.0048 1.0269 0.9357 1.0328

0.0027 1.0873 0.9980 1.0894

0.0020 1.0114 0.9218 1.0106

0.0037 1.1033 1.0264 1.1067

0.0002 1.0028 0.9198 0.9992

0.0004 0.9996 0.9048 0.9980

0.0058 1.3510 1.2633 1.3593

0.0020 1.0749 0.9889 1.0717

0.0018 1.2523 1.1661 1.2541

0.0015 0.9985 0.9132 0.9952

0.0089 0.9986 0.9282 1.0122

0.0024 1.0559 0.9728 1.0555

0.0036 1.1174 1.0290 1.1234

0.0033 1.0249 0.9409 1.0298

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

NORWALK

OLD SAYBROOK

PLAINFIELD

PLAINVTLLE

PLYMOUTH

PORTLAND

PUTNAM

RIDGEFIELD

ROCKY HILL

SEYMOUR

SHELTON

SIMSBURY

SOMERS

SOUTHINGTON

SOUTH WINDSOR

STAFFORD

STAMFORD

STONINGTON

STRATFORD

SUFFIELD

THOMASTON

THOMPSON

1.1452 1.1502 0.0522

1.0304 1.0317 0.0538

1.1202 1.1269 0.0521

1.0630 1.0623 0.0502

1.0871 1.0924 0.0519

1.1017 1.1046 0.0522

1.1008 1.1047 0.0522

1.0000 1.0016 0.0518

1.0819 1.0801 0.0537

1.0000 1.0029 0.0533

1.0004 1.0026 0.0499

1.0000 1.0041 0.0505

1.0588 1.0599 0.0521

1.1260 1.1282 0.0487

1.0210 1.0217 0.0523

1.0000 1.0040 0.0508

1.1514 1.1550 0.0507

1.0108 1.0119 0.0499

1.1535 1.1575 0.0514

1.0369 1.0383 0.0482

1.0000 1.0016 0.0535

1.0000 1.0049 0.0509
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0.0049 1.1403 1.0665 1.1452

0.0012 1.0292 0.9299 1.0271

0.0068 1.1134 1.0237 1.1245

-0.0007 1.0637 0.9776 1.0584

0.0053 1.0818 0.9872 1.0877

0.0029 1.0988 1.0060 1.1000

0.0038 1.0970 1.0096 1.1029

0.0016 0.9984 0.9058 0.9988

-0.0018 1.0837 0.9906 1.0746

0.0029 0.9971 0.9091 0.9996

0.0022 0.9982 0.9131 0.9997

0.0041 0.9959 0.8978 1.0013

0.0010 1.0578 0.9726 1.0551

0.0022 1.1238 1.0480 1.1231

0.0007 1.0203 0.9243 1.0166

0.0040 0.9960 0.9192 0.9999

0.0036 1.1478 1.0656 1.1518

0.0011 1.0098 0.9285 1.0098

0.0040 1.1495 1.0665 1.1506

0.0013 1.0356 0.9485 1.0343

0.0016 0.9984 0.9061 0.9992

0.0049 0.9951 0.9129 0.9997
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TOLLAND 1.0000 1.0036 0.0537 0.0036 0.9964 0.9152 0.9983

TORRINGTON 1.0712 1.0753 0.0501 0.0041 1.0671 0.9759 1.0746

TRUMBULL 1.0327 1.0371 0.0515 0.0043 1.0284 0.9464 1.0334

VERNON 1.0712 1.0707 0.0509 -0.0005 1.0717 0.9788 1.0675

WALLINGFORD 1.0077 1.0171 0.0492 0.0094 0.9983 0.9255 1.0157

WATERBURY 1.0000 1.0047 0.0492 0.0047 0.9953 0.9145 1.0046

WATERFORD 1.1048 1.1078 0.0501 0.0029 1.1019 1.0173 1.1055

WATERTOWN 1.0227 1.0279 0.0529 0.0052 1.0175 0.9348 1.0232

WESTBROOK 1.0489 1.0539 0.0544 0.0050 1.0438 0.9572 1.0506

WEST HARTFORD 1.0000 1.0009 0.0527 0.0009 0.9991 0.9094 0.9932

WEST HAVEN 1.0000 1.0025 0.0525 0.0025 0.9975 0.9087 0.9968

WESTON 1.00 I 1.0018 0.0523 0.0007 1.0005 0.9144 0.9954

WESTPORT 1.0023 1.0052 0.0498 0.0028 0.9995 0.9156 1.0023

WETHERSFIELD 1.1099 1.1154 0.0511 0.0055 1.1044 1.0092 1.1139

WILTON 1.0000 1.0028 0.0493 0.0028 0.9972 0.9139 1.0008

WINDHAM 1.1422 1.1455 0.0541 0.0033 1.1389 1.0503 1.1406

WINDSOR 1.1086 1.1103 0.0514 0.0017 1.1070 1.0233 1.1072

WINDSOR LOCKS 1.0000 1.0025 0.0481 0.0025 0.9975 0.9137 0.9981

WOLCOTT 1.1147 1.1207 0.0481 0.0060 1.1088 1.0333 1.1196

RD1 1.0883 1.0896 0.0565 0.0013 1.0869 0.9956 1.0827

RIM 1.0814 1.0828 0.0514 0.0014 1.0800 0.9963 1.0779

RD5 1.0471 1.0517 0.0523 0.0046 1.0425 0.9433 1.0510

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

144

RD6 1.0201 1.0248 0.0513 0.0047 1.0154 0.9309 1.0233

RD7 1.0384 1.0447 0.0500 0.0063 1.0321 0.9485 1.0421

RD8 1.0385 1.0417 0.0513 0.0032 1.0354 0.9436 1.0402

RD9 1.0222 1.0267 0.0509 0.0045 1.0177 0.9340 1.0251

RD10 1.0827 1.0881 0.0490 0.0053 1.0774 0.9984 1.0870

RD11 1.1262 1.1296 0.0510 0.0034 1.1229 1.0375 1.1258

RD12 1.0997 1.1019 0.0513 0.0022 1.0974 1.0001 1.0985

RD13 1.0588 1.0616 0.0509 0.0028 1.0559 0.9677 1.0580

RD14 1.0000 1.0035 0.0494 0.0035 0.9965 0.9146 0 .9 9 9 6

RD15 1.0572 1.0625 0.0540 0.0053 1.0519 0.9609 1.0583

RD17 1.0702 1.0723 0.0504 0.0021 1.0681 0.9814 1.0705

RD18 1.0108 1.0159 0.0500 0.0052 1.0056 0.9239 1.0113

RD19 1.0000 1.0049 0.0549 0.0049 0.9951 0.8928 1.0003

A verage 1.0649 1.0680 0.0515 0.0030 1.0619

<j»i = <(> from the DEA model

= bootstrap average of <j> 

seg (<i>i) = standard deviation of § 

biasg((|)j) = bias of <j>

= bias-corrected estimate of <f>
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Table 4.6: Bootstrap results for Maximum Producible Output (extended DEA model)

School District y \  V seB(y f) biasB(yjf )

95%

lower

limit

95%

upper

limit

ANSONIA 993.40 1046.79 60.25 53.39 933.14 1004.85 1088.47

AVON 1133.00 112033 80.85 -12.67 1072.76 1089.77 1201.07

BERLIN 1059.22 1351.44 84.49 234.04 1002.36 1041.90 1163.44

BETHEL 1104.89 1231.22 81.03 112.57 1039.70 1108.50 1213.13

BLOOMFIELD 1026.22 1455.13 76.53 364.81 968.67 904.74 994.77

BOLTON 1078.00 1065.53 77.01 -12.47 1016.56 1094.43 1194.90

BRANFORD 1027.00 1006.73 84.02 -20.27 964.86 930.12 1029.97

BRIDGEPORT 782.00 1610.31 55.85 521.49 739.09 746.99 815.15

BRISTOL 1004.00 1170.80 68.01 104.59 955.99 953.05 1036.75

BROOKFIELD 1089.08 1146.81 82.42 57.72 1024.12 1077.86 1179.90

CANTON 1061.00 1106.62 80.95 25.83 998.56 1045.53 1154.17

CHESHIRE 1123.58 1254.35 79.00 123.58 1060.92 1106.25 1199.96

CLINTON 1090.31 1250.34 79.74 141.41 1031.70 1075.59 1188.30

COLCHESTER 1019.00 999.14 74.51 -19.86 960.72 1023.01 1125.54

COVENTRY 1058.08 1269.82 79.15 153.18 1004.01 1009.12 1118.46

CROMWELL 108536 132638 82.94 217.29 1024.09 1046.31 1153.39

DANBURY 1032.00 1231.93 79.43 178.63 976.96 990.37 1103.02
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DARIEN 1121.00 1105.84

DERBY 914.00 907.62

EAST GRANBY 1065.00 1052.69

EAST HADDAM 1066.46 1145.76

EAST HAMPTON 1036.21 1146.77

EAST HARTFORD 973.87 1054.28

EAST HAVEN 931.76 1244.84

EAST LYME 1080.44 1163.49

EAST WINDSOR 963.00 1285.17

ELLINGTON 1093.88 1259.87

ENFIELD 1011.00 1065.86

FAIRFIELD 1115.82 1230.30

FARMINGTON 1092.00 1077.17

GLASTONBURY 1074.00 1106.25

GRANBY 1100.64 1131.73

GREENWICH 1128.13 1259.84

GRISWOLD 964.00 1270.97

GROTON 1037.47 1131.40

GUILFORD 1107.95 1170.33

HAMDEN 1090.85 1332.57

HARTFORD 777.00 1467.84

KILI.INGLY 992.00 132633

146

88-25 -15.16 1059.57 1103.36 1225.54

65.96 -9.18 865.25 781.78 865.56

76.11 -12.31 100930 1071.02 1174.12

75.08 69.77 1010.61 974.86 1062.42

7330 96.23 977.58 1053.46 1147.36

74.15 5031 91930 885.60 974.05

64.13 216.59 884.08 933.75 1018.02

81.83 58.54 1023.56 1062.95 1170.15

71.89 207.38 909.70 905.89 998.00

79.48 133.15 1035.67 1080.64 1188.46

74.68 31.41 954.77 1022.71 1119.16

86.10 102.05 1050.83 105835 1189.27

78.90 -14.83 1036.95 1073.64 1190.90

77.96 15.01 1014.44 1037.66 1136.07

82.66 18.23 1037.83 108039 1191.65

80.49 118.44 1065.16 1113.31 1219.52

71.52 199.62 913.37 895.12 983.07

78.92 58.99 977.54 1032.97 1135.09

76.71 59.32 1044.97 1146.56 1238.17

84.11 238.62 1024.45 109332 1201.08

59.16 43832 732.48 720.78 793.78

72.18 216.40 937.98 930.98 1025.52
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LEBANON 1036.00 1331.46 79.04 190.16 977.62 1019.79 1130.78

LEDYARD 1093.73 1298.07 74.40 16233 1039.05 881.07 959.76

LITCHFIELD 1077.00 1170.53 75.63 57.94 1018.01 108733 1183.87

MADISON 1087.00 1189.14 82.76 63.47 102439 1105.05 121138

MANCHESTER 1056.96 1204.68 79.48 130.70 999.99 98237 1085.43

MERIDEN 946.00 1192.09 6733 157.13 894.36 95335 104334

MIDDLETOWN 1040.10 1364.11 7633 260.76 98139 990.04 1079.62

MILFORD 1067.45 133634 7835 232.92 1005.55 1067.11 1170.11

MONROE 103633 108533 78.49 4630 97732 974.14 1069.48

MONTVTLLE 1038.12 126031 70.70 162.66 987.46 1040.60 112737

NAUGATUCK 928.00 953.95 74.19 1333 87539 88636 99537

NEW BRITAIN 979.11 1180.85 7034 17439 924.79 961.81 105833

NEW CANAAN 1129.00 113031 7938 -2.00 1066.84 1136.81 124632

NEW FAIRFIELD 1048.00 1038.63 79.48 -937 991.04 102635 1131.07

NEW HAVEN 983.17 1551.98 7037 481.46 92835 968.13 1059.85

NEWINGTON 1055.85 1253.83 78.65 142.48 999.69 1019.34 1125.18

NEW LONDON 101332 1521.99 7531 402.06 960.08 990.80 109430

NEW MILFORD 1058.00 1045.88 77.05 -12.12 1001.03 1055.15 115835

NEWTOWN 1065.00 1062.07 78.78 -10.87 1011.90 105038 1156.71

NORTH BRANFORD 1002.00 1163.10 73.02 102.73 944.15 91736 1007.47

NORTH HAVEN 108237 1337.09 8031 21738 102438 1020.46 1117.68

NORTH STONINGTON 1061.00 1135.85 8038 45.02 99933 1045.73 113939
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NORWALK 1027.56 1324.23 77.63 24427 967.12 1021.39 1132.69

OLD SAYBROOK 1083.18 1136.49 84.40 52.46 1019.14 982.07 1084.33

PLAINFIELD 975.00 1297.47 70.36 205.31 921.48 911.20 997.10

PLAINVTLLE 990.00 1168.36 70.79 116.03 933.04 926.59 1011.88

PLYMOUTH 994.95 1217.84 70.95 149.20 940.72 980.62 1072.20

PORTLAND 1095.46 1327.13 85.35 189.09 1031.85 1075.21 1187.88

PUTNAM 1017.60 1262.82 75.12 177.38 965.20 950.31 1045.13

RIDGEFIELD 1130.00 1117-20 80.92 -12.80 1065.36 1134.71 1240.13

ROCKY HILL 1079.37 1249.39 75.61 155.58 1023.84 996.73 1073.77

SEYMOUR 975.00 961.07 73.93 -13.93 918.75 920.03 1012.08

SHELTON 982.00 971.45 72.92 -10.93 927.84 969.47 1071.06

SIMSBURY 1140.00 1121.72 83.39 -18.28 1080.56 1078.17 1182.35

SOMERS 1017.00 1184.51 7 7 2 7 107.67 962.70 936.06 1032.23

SOUTHINGTON 1092.09 1345.99 80.99 227.88 1033.43 1042.91 1158.27

SOUTH WINDSOR 1073.04 1107.23 84.32 34.19 1011.65 982.64 1083.21

STAFFORD 1080.00 1063.06 76.83 -16.94 1023.98 1089.38 1185.98

STAMFORD 1034.30 1352.51 72.53 258.68 981.57 1040.60 1134.43

STONINGTON 1034.00 1057.85 78.93 12.65 972.58 1038.18 1139.36

STRATFORD 1054.85 1354.55 75.09 261.02 996.39 972.63 1064.18

SUFFIELD 1060.83 112927 74.94 65.37 1004.62 981.24 1067.82

THOMASTON 937.00
9

926.04 67.70 -10.96 879.74 892.46 969.63

THOMPSON 1060.00 1041.42 80.39 -18.58 999.17 1025.58 1140.67
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TOLLAND 1089.00 1071.69 78.36 -17.31 1028.59 1084.44 1195.78

TORRINGTON 1020.31 1159.62 73.55 120.54 967.17 874.50 966.56

TRUMBULL 1062.70 1113.14 77.67 50.44 1007.22 101120 1114.15

VERNON 1087.73 1246.84 79.50 137.08 1024.53 993.77 1089.37

WALLINGFORD 968.00 964.82 75.48 -10.61 911.54 940.60 1037.75

WATERBURY 856.00 841.60 68.42 -14.40 803.33 839.58 926.58

WATERFORD 1095.31 1336.86 84.36 195.57 1030.67 1024.46 1144.18

WATERTOWN 1015.87 1049.65 79.30 26.97 958.76 963.53 1072.04

WESTBROOK 1074.05 1154.49 76.81 80.42 1019.04 1085.62 1193.84

WEST HARTFORD 1070.00 1063.20 79.80 -6.80 1012.75 1059.56 1162.52

WEST HAVEN 935.00 922.58 74.05 -12.42 876.55 925.35 1019.60

WESTON 1110.00 1103.39 81.61 -7.85 1045.45 1107.57 1203.93

WESTPORT 1139.00 1131.92 85.01 -9.71 1080.62 1088.03 1204.29

WETHERSFIELD 1112.15 1319.60 84.98 196.39 1043.47 1116.43 1236.36

WILTON 1142.00 1127.25 77.37 -14.75 1081.36 1143.84 1248.71

WINDHAM 1047.23 1386.68 79.07 253.65 988.49 1057.95 1157.88

WINDSOR 1078.57 1292.39 82.89 195.97 1022.04 1033.04 1137.57

WINDSOR LOCKS 1008.00 995.89 69.36 -12.11 955.02 992.84 1091.06

WOLCOTT 986.79 1241.13 72.30 191.06 931.17 99029 1098.15

RD1 1064.17 1254.32 77.93 160.63 1004.12 91721 1007.45

RIM 1107.55 1294.57 79.49 155.90 1047.29 1063.40 1153.91

RD5 1120.53 1213.29 85.43 82.42 1059.18 1031.33 1144.34
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RD6 1116.00 1164.30 83.51 25.89 1054.37 1070.04 1183.81

RD7 1089.00 1192.43 75.14 61.65 1032.03 1022.43 1113.42

RD8 1096.67 1206.90 76.58 68.67 1036.20 1087.02 1175.68

RD9 1090.00 1144.58 74.42 30.36 1030.70 1080.51 1167.44

RD10 1097.25 1287.03 78.11 151.24 1037.98 1090.20 1193.20

RD11 1094.79 1372.68 78.36 230.68 1035.27 1015.96 1110.89

RD12 1097.99 1293.14 81.21 182.47 1037.60 1001.23 1104.93

RD13 1092.47 1206.65 78.51 106.60 1032.97 1066.45 1163.09

RD14 1002.00 987.63 72.70 -14.37 949.97 1000.05 1099.02

RD15 1081.01 1183.86 76.80 97.03 1026.05 1015.36 1113.58

RD17 1102.94 1254.76 77.65 132.09 1045.95 1021.85 1117.89

RD18 1117.00 1133.44 86.15 4.41 1052.50 1007.92 1113.50

RD19 1119.00 1097.73 82.61 -21.27 1054.44 1019.25 1113.16

Average 1048.35 1185.73 77.07 57.87 990.48

yjf = maximum producible output from the DEA model 

y,f = bootstrap average of the maximum producible output 

see (y f ) — standard deviation of the maximum producible output 

bias3  (y j ) = bias of the maximum producible output

» f

Yi -  bias-corrected estimate of the maximum producible output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

151

Table 4.7: Bootstrap results for <j> scores (extended DEA model)

School District ♦i ♦i seB0i>i) biasB(fc) <i>i

95%

lower

limit

95%

upper

limit

ANSONIA 1.0326 1.0336 0.0369 0.0009 1.0317 0.9988 1.0151

AVON 1.0000 1.0301 0.0422 0.0301 0.9699 0.9171 0.9577

BERLIN 1.0732 1.0310 0.0479 -0.0422 1.1153 1.0599 1.0977

BETHEL 1.0513 1.0334 0.0424 -0.0179 1.0692 1.0142 1.0555

BLOOMFIELD 1.1583 1.0319 0.0444 -0.1264 1.2846 1.2322 1.2677

BOLTON 1.0000 1.0322 0.0425 0.0322 0.9678 0.9145 0.9551

BRANFORD 1.0000 1.0350 0.0501 0.0350 0.9650 0.9061 0.9470

BRIDGEPORT 1.0000 1.0310 0.0411 0.0310 0.9690 0.9159 0.9535

BRISTOL 1.0000 1.0269 0.0391 0.0269 0.9731 0.9243 0.9591

BROOKFIELD 1.0343 1.0339 0.0447 -0.0003 1.0346 0.9794 1.0204

CANTON 1.0000 1.0336 0.0459 0.0336 0.9664 0.9143 0.9504

CHESHIRE 1.0570 1.0314 0.0411 -0.0256 1.0826 1.0289 1.0684

CLINTON 1.0606 1.0305 0.0431 -0.0301 1.0907 1.0383 1.0765

COLCHESTER 1.0000 1.0324 0.0430 0.0324 0.9676 0.9137 0.9528

COVENTRY 1.0263 1.0293 0.0456 0.0030 1.0232 0.9733 1.0074

CROMWELL 1.0997 1.0322 0.0454 -0.0674 1.1671 1.1135 1.1495

DANBURY 1.0795 1.0306 0.0460 -0.0489 1.1284 1.0745 1.1109
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DARIEN 1.0000 1.0315 0.0474 0.0315 0.9685 0.9095 0.9511

DERBY 1.0000 1.0302 0.0422 0.0302 0.9698 0.9175 0.9552

EAST GRANBY 1.0000 1.0296 0.0417 0.0296 0.9704 0.9210 0.9548

EAST HADDAM 1.0294 1.0296 0.0412 0.0002 1.0292 0.9775 1.0173

EAST HAMPTON 1.0393 1.0319 0.0414 -0.0074 1.0468 0.9924 1.0314

EAST HARTFORD 1.0009 1.0321 0.0457 0.0312 0.9697 0.9159 0.9549

EAST HAVEN 1.0262 1.0288 0.0402 0.0026 1.0235 0.9734 1.0099

EAST LYME 1.0116 1.0301 0.0450 0.0185 0.9932 0.9401 0.9778

EAST WINDSOR 1.0000 1.0315 0.0448 0.0315 0.9685 0.9166 0.9553

ELLINGTON 1.0418 1.0302 0.0431 -0.0116 1.0534 1.0022 1.0364

ENFIELD 1.0000 1.0316 0.0438 0.0316 0.9684 0.9156 0.9553

FAIRFIELD 1.0448 1.0334 0.0471 -0.0114 1.0562 1.0019 1.0407

FARMINGTON 1.0000 1.0286 0.0425 0.0286 0.9714 0.9235 0.9547

GLASTONBURY 1.0000 1.0314 0.0424 0.0314 0.9686 0.9124 0.9534

GRANBY 1.0033 1.0325 0.0449 0.0292 0.9741 0.9217 0.9593

GREENWICH 1.0465 1.0315 0.0414 -0.0150 1.0615 1.0085 1.0472

GRISWOLD 1.0000 1.0299 0.0442 0.0299 0.9701 0.9152 0.9536

GROTON 1.0005 1.0329 0.0452 0.0325 0.9680 0.9129 0.9520

GUILFORD 1.0326 1.0319 0.0406 -0.0006 1.0332 0.9794 1.0203

HAMDEN 1.1339 1.0347 0.0457 -0.0992 1.2332 1.1720 1.2187

HARTFORD 1.0000 1.0327 0.0453 0.0327 0.9673 0.9138 0.9506

KIT.I.INGLY 1.0000 1.0309 0.0428 0.0309 0.9691 0.9150 0.9572
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LEBANON 1.0000 1.0323

LEDYARD 1.0466 1.0281

LITCHFIELD 1.0000 1.0308

MADISON 1.0000 1.0329

MANCHESTER 1.0570 1.0308

MERIDEN 1.0000 1.0308

MIDDLETOWN 1.0823 1.0321

MILFORD 1.0971 1.0329

MONROE 1.0293 1.0325

MONTVILLE 1.0309 1.0275

NAUGATUCK 1.0000 1.0328

NEW BRITAIN 1.0771 1.0314

NEW CANAAN 1.0000 1.0310

NEW FAIRFIELD 1.0000 1.0311

NEW HAVEN 1.2461 1.0315

NEW INGTON 1.0231 1.0304

NEW LONDON 1.1346 1.0299

NEW MILFORD 1.0000 1.0306

NEWTOWN 1.0000 1.0285

NORTH BRANFORD 1.0000 1.0327

NORTH HAVEN 1.0837 1.0306

NORTH STONINGTON 1.0000 1.0331

153

0.0469 0.0323 0.9677 0.9144 0.9525

0.0394 -0.0185 1.0652 1.0158 1.0507

0.0408 0.0308 0.9692 0.9175 0.9569

0.0459 0.0329 0.9671 0.9121 0.9497

0.0455 -0.0261 1.0831 1.0287 1.0686

0.0414 0.0308 0.9692 0.9160 0.9546

0.0437 -0.0502 1.1325 1.0790 1.1176

0.0433 -0.0642 1.1613 1.1076 1.1477

0.0457 0.0032 1.0261 0.9704 1.0095

0.0398 -0.0034 1.0343 0.9851 1.0224

0.0486 0.0328 0.9672 0.9138 0.9493

0.0426 -0.0457 1.1229 1.0692 1.1094

0.0409 0.0310 0.9690 0.9171 0.9551

0.0450 0.0311 0.9689 0.9140 0.9543

C.0418 -0.2146 1.4607 1.4088 1.4443

0.0448 0.0072 1.0159 0.9613 0.9996

0.0440 -0.1047 1.2394 1.1853 1.2226

0.0433 0.0306 0.9694 0.9179 0.9539

0.0438 0.0285 0.9715 0.9188 0.9572

0.0437 0.0327 0.9673 0.9135 0.9531

0.0436 -0.0531 1.1367 1.0815 1.1220

0.0444 0.0331 0.9669 0.9098 0.9515
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NORWALK 1.0897 1.0335

OLD SAYBROOK 1.0296 1.0338

PLAINFIELD 1.0000 1.0310

PLAINVTLLE 1.0000 1.0325

PLYMOUTH 1.0122 1.0308

PORTLAND 1.0605 1.0333

PUTNAM 1.0320 1.0293

RIDGEFIELD 1.0000 1.0323

ROCKY HILL 1.0676 1.0290

SEYMOUR 1.0000 1.0329

SHELTON 1.0000 1.0314

SIMSBURY 1.0000 1.0296

SOMERS 1.0000 1.0306

SOUTHINGTON 1.0998 1.0306

SOUTH WINDSOR 1.0210 1.0328

STAFFORD 1.0000 1.0293

STAMFORD 1.0887 1.0288

STONINGTON 1.0000 1.0339

STRATFORD 1.1127 1.0313

SUFlfl ELD 1.0339 1.0299

THOMASTON 1.0000 1.0345

THOMPSON 1.0000 1.0328

154

0.0452 -0.0562 1.1458 1.0923 1.1308

0.0466 0.0042 1.0254 0.9707 1.0083

0.0418 0.0310 0.9690 0.9158 0.9538

0.0418 0.0325 0.9675 0.9159 0.9538

0.0425 0.0187 0.9935 0.9427 0.9785

0.0470 -0.0272 1.0876 1.0321 1.0708

0.0436 -0.0027 1.0348 0.9823 1.0190

0.0422 0.0323 0.9677 0.9129 0.9531

0.0407 -0.0386 1.1062 1.0523 1.0925

0.0452 0.0329 0.9671 0.9089 0.9517

0.0439 0.0314 0.9686 0.9124 0.9540

0.0432 0.0296 0.9704 0.9198 0.9565

0.0454 0.0306 0.9694 0.9160 0.9533

0.0449 -0.0691 1.1689 1.1153 1.1526

0.0469 0.0119 1.0091 0.9541 0.9909

0.0414 0.0293 0.9707 0.9200 0.9551

0.0407 -0.0600 1.1487 1.0981 1.1340

0.0456 0.0339 0.9661 0.9093 0.9515

0.0418 -0.0814 1.1941 1.1390 1.1803

0.0414 -0.0040 1.0380 0.9873 1.0226

0.0423 0.0345 0.9655 0.9102 0.9527

0.0461 0.0328 0.9672 0.9115 0.9540

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TOLLAND 1.0000 1.0313

TORRINGTON 1.0519 1.0295

TRUMBULL 1.0327 1.0297

VERNON 1.0499 1.0329

WALLINGFORD 1.0000 1.0334

WATERBURY 1.0000 1.0354

WATERFORD 1.0603 1.0338

WATERTOWN 1.0159 1.0323

WESTBROOK 1.0489 1.0290

WEST HARTFORD 1.0000 1.0305

WEST HAVEN 1.0000 1.0359

WESTON 1.0000 1.0330

WESTPORT 1.0000 1.0293

WETHERSFIELD 1.0990 1.0352

WILTON 1.0000 1.0298

WINDHAM 1.0557 1.0320

WINDSOR 1.0906 1.0301

WINDSOR LOCKS 1.0000 1.0295

WOLCOTT 1.0475 1.0320

RD1 1.0589 1.0320

RD4 1.0518 1.0307

RD5 1.0375 1.0313

155

0.0419 0.0313 0.9687 0.9165 0.9530

0.0426 -0.0223 1.0742 1.0211 1.0598

0.0430 -0.0031 1.0358 0.9830 1.0203

0.0432 -0.0170 1.0670 1.0131 1.0538

0.0466 0.0334 0.9666 0.9096 0.9491

0.0488 0.0354 0.9646 0.9084 0.9467

0.0472 -0.0265 1.0869 1.0327 1.0710

0.0478 0.0165 0.9994 0.9465 0.9840

0.0425 -0.0198 1.0687 1.0173 1.0555

0.0446 0.0305 0.9695 0.9162 0.9531

0.0481 0.0359 0.9641 0.9076 0.9473

0.0435 0.0330 0.9670 0.9102 0.9523

0.0447 0.0293 0.9707 0.9173 0.9571

0.0466 -0.0637 1.1627 1.1081 1.1497

0.0394 0.0298 0.9702 0.9221 0.9548

0.0445 -0.0237 1.0794 1.0265 1.0626

0.0463 -0.0605 1.1510 1.0983 1.1346

0.0399 0.0295 0.9705 0.9189 0.9579

0.0439 -0.0156 1.0631 1.0095 1.0483

0.0430 -0.0269 1.0858 1.0330 1.0726

0.0418 -0.0211 1.0729 1.0192 1.0584

0.0455 -0.0062 1.0437 0.9889 1.0275
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KD6 1.0000 1.0314 0.0442 0.0314 0.9686 0.9180 0.9522

RD7 1.0000 1.0294 0.0399 0.0294 0.9706 0.9206 0.9552

RD8 1.0006 1.0310 0.0407 0.0304 0.9702 0.9183 0.9556

RD9 1.0000 1.0305 0.0391 0.0305 0.9695 0.9192 0.9563

RD10 1.0460 1.0305 0.0414 -0.0155 1.0615 1.0076 1.0487

RD11 1.0797 1.0307 0.0422 -0.0489 1.1286 1.0764 1.1166

RD12 1.0871 1.0313 0.0445 -0.0558 1.1429 1.0891 1.1279

RD13 1.0515 1.0308 0.0420 -0.0207 1.0721 1.0187 1.0600

RD14 1.0000 1.0295 0.0426 0.0295 0.9705 0.9181 0.9554

RD15 1.0516 1.0288 0.0417 -0.0228 1.0744 1.0217 1.0595

RD17 1.0514 1.0292 0.0408 -0.0223 1.0737 1.0233 1.0586

RD18 1.0000 1.0330 0.0461 0.0330 0.9670 0.9123 0.9506

RD19 1.0000 1.0327 0.0429 0.0327 0.9673 0.9136 0.9527

Average 1.0314 1.0314 0.0436 0.0000 1.0315

<{>, = ()> from the DEA model

<j>i = bootstrap average of <)> 

s e B  (<j>j) = standard deviation of <{> 

b ia sg ^ j)  = bias of <j>

= bias-corrected estimate of <j>
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Table 4.8: Comparison between the two procedures (bias-corrected estimates)

SAT

Bootstrap conditional to 

socioeconomic 

characteristics

Bootstrap using the 

extended DEA model with 

the socioeconomic 

characteristics

ii W <i>i y«f

Bridgeport 782 1.3883 567.34 0.9690 824.91

Hartford 777 1.3224 591.39 0.9673 821.52

New Haven 789 1.3510 589.06 1.4607 1038.00

Avon 1133 .09985 1145.67 0.9699 1193.24

Glastonbury 1074 1.0105 1076.24 0.9686 1133.56

Simsbury 1140 0.9959 1158.28 0.9704 1199.44
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Table 4.9: Data

School District SAT Mino BA Instrh (Tl/stu) (T2/stu) 

*1000 *1000

(s/stu)*

1000

(a/stu)*

1000

(pc/stu)*

1000

ANSONIA 962 26.6 17.4 947 50.0433 9.7054 4.7660 5.5459 120.4819

AVON 1133 6.3 78.9 1013 70.0219 7.6586 5.3829 7.4398 116.2791

BERLIN 987 4.5 33 964.33 61.5436 8.4134 5.3991 5.2998 161.2903

BETHEL 1051 10.3 53.5 989 61.6013 9.7331 5.8399 4.0816 178.5714

BLOOMFIELD 886 882  32.5 920.33 57.4819 12.9525 7.6428 4.8270 136.9863

BOLTON 1078 3.8 45.5 969.5 69.4935 6.9494 5.8893 3.5336 151.5152

BRANFORD 1027 7.6 39.1 934.33 63.1055 8.1650 5.3972 4.1517 70.4225

BRIDGEPORT 782 88.3 5.9 973 57.9023 8.1742 4.8794 4.8794 129.8701

BRISTOL 1004 13.2 21.4 954.67 60.4508 8.8597 4.5805 4.0743 90.0901

BROOKFIELD 1053 5.9 63.4 966 58.9141 8.3173 4.7362 3.8506 135.1351

CANTON 1061 3 50.8 937 63.2579 9.4229 7.3046 5.8437 86.9565

CHESHIRE 1063 5 66.7 946.67 60.4698 9.4837 6.2043 4.8748 153.8462

CLINTON 1028 9 44.3 960 60.6652 12.3725 5.0554 5.3215 140.8451

COLCHESTER 1019 3.8 39.9 920.33 52.4814 8.8916 4.9628 2.8950 93.4579

COVENTRY 1031 2.6 35.5 965 60.1156 10.6674 6.4109 4.7294 113.6364

CROMWELL 987 10.9 35 1004.6 61.9765 10.6086 5.0251 5.0251 116.2791

DANBURY 956 39.5 35.8 931 59.4988 11.0174 5.3355 5.6589 82.6446

DARIEN 1121 5.7 84.2 990 68.4160 8.8000 4.8640 5.7600 108.6957

DERBY 914 19.6 20.1 942 49.8962 7.4048 3.8062 3.4602 74.6269

EAST GRANBY 1065 4.5 49.6 976.33 65.1572 5.7862 3.7736 7.5472 204.0816
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EASTHADDAM 1036 3.5 25.1

EAST HAMPTON 997 3.5 433

EAST HARTFORD 973 49.4 16.9

EAST HAVEN 908 6.3 17.5

EAST LYME 1068 5.7 45.1

EAST WINDSOR 963 10.9 15

ELLINGTON 1050 33 41.8

ENFIELD 1011 73 26.5

FAIRFIELD 1068 7.5 60.5

FARMINGTON 1092 113 653

GLASTONBURY 1074 1.6 66.8

GRANBY 1097 3.6 58.1

GREENWICH 1078 19.9 633

GRISWOLD 964 4 14.6

GROTON 1037 19.9 21.7

GUILFORD 1073 43 59.9

HAMDEN 962 273 453

HARTFORD 777 95.1 6.6

KTLI.INGLY 992 6.6 15.1

LEBANON 1036 2.1 303

LEDYARD 1045 10.6 49.7

LITCHFIELD 1077 3.1 443

MADISON 1087 2.9 70.1

MANCHESTER 1000 25.6 34.9

64.0538 9.5804 3.4838 53424 222.2222

56.6459 11.1111 5.9709 5.1921 69.4444

56.9873 10.4590 4.9721 63254 62.8931

54.6479 7.1703 43534 6.1460 192.3077

62.3066 7.7356 4.9226 4.5007 185.1852

57.9780 7.9092 4.1265 6.1898 156.2500

59.4378 10.0402 8.0321 5.0201 138.8889

593460 8.8420 43387 43639 833333

62.1069 11.6616 6.4848 4.3139 1513152

62.9371 5.1748 4.5594 4.1958 119.0476

58.9028 93825 5.5049 5.5049 97.0874

583315 11.1693 6.3991 6.9808 128.2051

67.5158 12.7765 8.5132 7.7624 181.8182

60.4167 11.6477 53083 3.3144 147.0588

64.8217 103207 3.7441 5.6975 135.1351

613688 9.5934 5.4983 5.1546 114.9425

59.8053 9.4942 5.1221 4.9465 100.0000

58.1102 133219 4.2705 4.6656 78.1250

623753 8.8264 63112 3.9229 125.0000

66.9536 8.0132 73510 53980 178.5714

60.6369 8.4713 6.7516 5.5414 163.9344

67.0111 7.7901 4.7695 5.5644 114.9425

60.6780 8.1017 6.1017 4.4068 178.5714

583667 8.9244 6.1388 43848 87.7193

10103

999

956.67

95933

97233

97033

987

944

95833

998

976.33

1030

994

957.67

970

947

1007

973.67

983.67

10053

95533

1013

963

96033
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MERIDEN 946 41.6 15.6 937 58.0197 8.6310 43313 3.8360 84.0336

MIDDLETOWN 961 36.9 25.8 964.67 61.1465 8.9172 7.0488 4.6709 98.0392

MILFORD 973 11 30.4 996.67 593749 9.7757 7.0532 3.8087 120.4819

MONROE 1007 5.1 58.4 956.67 54.6456 8.0486 4.8574 3.8125 111.1111

MONTVILLE 1007 8.7 25.1 957.67 61.7059 10.6353 4.6395 4.6395 196.0784

NAUGATUCK 928 8.8 22.4 925.67 49.9030 7.2096 4.0543 3.3492 109.8901

NEW BRITAIN 909 64.4 15.4 98333 53.6089 11.4706 4.8696 4.1121 75.1880

NEW CANAAN 1129 3.9 83.5 982.67 68.2571 9.7747 5.6991 5.9642 153.8462

NEW FAIRFIELD 1048 3.7 51.4 97533 59.9021 7.1536 5-2711 4.5181 64.9351

NEW HAVEN 789 86.6 13.8 951 55.4881 11.1839 5.1659 5.9647 142.8571

NEW INGTON 1032 10.9 40.7 97433 61.6486 6.7374 6.9102 4.6890 1333333

NEW LONDON 893 69.7 13.6 997.67 64.6399 15.4891 5.4348 6.4538 113.6364

NEW MILFORD 1058 6.5 45 937.67 56.8670 7.6180 4.0773 4.9356 96.1538

NEWTOWN 1065 3.2 63 958.67 60.3665 8.0070 6.1245 3.4890 111.1111

NORTH BRANFORD 1002 41 30.6 939.67 58.6447 7.9930 522129 5.2129 87.7193

NORTH HAVEN 999 8.5 40.5 95733 61.5523 10.1888 6.6527 6.8924 111.1111

NORTH STONINGTON 1061 3.8 34.1 969 653098 8.6768 4.3384 4.3384 149.2537

NORWALK 943 47 28.8 93433 60.8704 10.4543 5.0980 4.5911 102.0408

OLD SAYBROOK 1052 5-5 43.9 98133 72.0187 11.0678 3.8971 5.4560 1923077

PLAINFIELD 975 4.9 10.2 972.67 56.9411 11.0231 5.7182 4.4781 106.3830

PLAINVTI .1 ,F. 990 10.7 183 963 63.6256 6.1345 3.9324 5.5053 163.9344

PLYMOUTH 983 2.8 18.6 955.33 60.4368 10.4622 4.0630 5.6882 105.2632

PORTLAND 1033 7.8 31.8 99333 693447 11.7739 61194 61194 158.7302

PUTNAM 986 6.4 18.4 960.67 65.8210 12.6850 4.2283 4.9331 1493537
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RIDGEFIELD 1130 4.8 78.9 957.67 63.2713 7.8599 6.7826 4.8972 114.9425

ROCKY HILL 1011 11.2 43.5 968.67 60.0000 9.0022 5.7650 3.5477 112.3596

SEYMOUR 975 5.5 27.1 998.67 49.5301 10.1801 3.1323 5.0901 114.9425

SHELTON 982 7.9 38.5 971.67 53.7296 9.9394 4.0704 4.7331 73.5294

SIMSBURY 1140 5.7 81.6 927 61.2692 8.3528 6.6262 4.6664 138.8889

SOMERS 1017 2 41.8 1041 60.9396 8.0537 3.6913 6.7114 232.5581

SOUTHINGTON 993 5 38.7 972.67 61.9469 10.4021 6.0860 4.5024 112.3596

SOUTH WINDSOR 1051 8.8 512 963 57.4581 8.2740 5.7458 4.8265 95.2381

STAFFORD 1080 4.2 13.9 1013.3 53.5679 11.6947 7.4331 4.4599 76.3359

STAMFORD 950 54.6 32 932.33 64.5780 10.2139 5.9934 3.8042 136.9863

STONINGTON 1034 3.5 34.6 926.33 65.6696 12.3214 4.0179 5.8036 135.1351

STRATFORD 948 24.4 31.6 984 57.7191 7.8600 7.8600 5.9321 166.6667

SUFFIELD 1026 3.7 48.6 1058.6 61.2328 8.6093 4.5848 3.3622 107.5269

THOMASTON 937 2.5 21.2 956.67 58.4133 7.8466 3.0514 6.1029 54.9451

THOMPSON 1060 1.7 22.5 995.33 54.0816 9.4558 2.9932 5.4422 149.2537

TOLLAND 1089 3.4 49.8 949.33 58.7905 9.1145 4.4924 3.4557 104.1667

TORRINGTON 970 8.6 25.9 946 53.7087 8.6295 5.3216 4.3148 188.6792

TRUMBULL 1029 7.8 66.8 983.33 56.3535 8.0186 7.5907 4.0930 114.9425

VERNON 1036 14 38.7 967.67 63.5864 11.1270 7.0678 6.6858 100.0000

WALLINGFORD 968 7.8 33.1 940 60.8311 7.2207 4.1261 3.8314 71.9424

WATERBURY 856 59.8 10.3 924 59.5809 11.8337 2.9340 4.6245 49.5050

WATERFORD 1033 7.8 29.4 1014.6 68.4230 12.2318 8.4682 5.2691 178.5714

WATERTOWN 1000 3.4 37.9 962.33 56.3396 9.0361 3.5858 4.0161 135.1351

WESTBROOK 1024 5.2 60.2 997.33 71.3939 7.8788 3.6364 6.0606 181.8182
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WEST HARTFORD 1070 21.9 65.2 944.67 60.8588 9.5199 6.4410 5.0725 72.9927

WEST HAVEN 935 35.2 18.7 969 53.1609 8.6344 3.4209 3.0104 60.2410

WESTON 1110 4.4 93.4 981 68.1952 9.7002 4.7031 5.8789 153.8462

WESTPORT 1139 5.8 78.9 1027.6 66.6842 16.2497 7.6376 6.8475 188.6792

WETHERSFIELD 1012 10 50.1 966.33 60.6796 10.6149 7.0550 6.4725 114.9425

WILTON 1142 5 83.9 1022 60.9841 7.6825 7.0794 4.4444 200.0000

WINDHAM 992 44.9 17.4 973 67.3244 14.3064 7.3709 4.9333 121.9512

WINDSOR 989 42.4 47.3 947.67 57.8017 8.5964 7.7905 4.2534 129.8701

WINDSOR LOCKS 1008 9.6 22.3 956 52.3654 7.1234 5.0027 4.8940 135.1351

WOLCOTT 942 3.8 25.5 937 56.7520 8.5643 5.4016 4.3355 87.7193

RD1 1005 3.8 36.7 974 88.4462 8.9641 5.9761 13.9442 89.2857

RD4 1053 2.9 46.2 966.5 783820 7.9576 6.8966 9.2838 285.7143

RD5 1080 8.5 72.8 933.5 79.2283 7.9281 11.6279 5.2854 156.2500

RD6 1116 2.4 45.3 971.5 73.0769 8.1731 6.3462 8.6538 161.2903

RD7 1089 1.4 46.6 959 70.4989 7.5922 7.7007 6.5076 196.0784

RD8 1096 2.2 53.6 967 79.2088 9.0909 6.3131 6.1448 158.7302

RD9 1090 2.9 70.6 995 69.3215 6.4897 8.2596 10.3245 131.5789

RD10 1049 2.8 49 1031.6 62.8706 9.4542 7.0907 6.6609 128.2051

RD11 1014 4.2 26.8 1038 91.0864 13.9276 83565 13.9276 312.5000

RD12 1010 3.1 48.3 957.33 67.3893 10.5561 5.0895 6.5975 204.0816

RD13 1039 3.5 47.3 1016.6 64.9671 9.1009 4.2215 6.0307 129.8701

RD14 1002 4.4 44.3 970.67 61.8209 8.7127 3.7200 3.4263 169.4915

RD15 1028 3.7 51.1 954.33 56.4030 10.3574 5.9949 5.3476 128.2051

RD17 1049 3.1 60.1 1039 69.2010 93978 5.2300 53269 175.4386
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RD18 1117 2.9 56.3 996.33 69.8276 11.7816 5.3161 6.4655 136.9863

RD19 1119 8.4 56.6 1032 78.3439 6.3694 7.4310 5.3079 208.3333
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C h a pter  5: D is s e r t a t io n  Su m m a r y

5.1 Introduction

The dissertation consists of three essays that are developed independently. They all 

contribute to estimation of statistical production frontiers and technical efficiency using 

alternative techniques. The first essay relates to econometric estimation of production 

frontiers from panel data and modeling o f technical efficiency and technical change. The 

second essay develops a methodology for estimation of a statistical production frontier using 

mathematical programming and bootstrapping techniques. Finally, the third essay estimates a 

non-parametric frontier using Data Envelopment Analysis and bootstrapping. Each essay 

includes a methodological extension with an empirical application.

The first chapter provides a brief literature review and places the three essays in 

perspective. Chapters 2 to 4 present the three essays, which are summarized in the following 

sections o f this chapter.

5.2 Frontier Production Function Models with Autoregressively Time-Varying

Efficiency

Traditional econometric estimation techniques fail to measure a production frontier, 

because they allow the observed output bundle produced by a given set of inputs to be greater 

than the estimated maximal producible output. The composed error frontier was first 

introduced by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977). 

The composed error is the sum of a two-sided error term that represents the random shocks

163
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and a one-sided error term that represents technical inefficiency. Although this procedure has 

been extended to panel data, researchers usually model the technical efficiency as an explicit 

function of time. This does not allow us to distinguish between technical change and 

efficiency change. The first essay in this dissertation constructs a model specifying technical 

efficiency change through firm-specific intercepts that evolve over time as a first order auto

regressive process. Besides allowing efficiency in one period to be influenced by past levels 

of efficiency, this approach separates efficiency from technical change.

For the empirical application the first essay uses a panel data set of 12 states from the 

Indian Manufacturing sector for the period 1954-1983.

53 Mathematical Programming Estimation of a Parametric Production Frontier

A major drawback of econometric estimation of composed error frontiers is that 

explicit assumptions are required about the probability distribution of the error terms. Such 

assumptions are arbitrary and alternative assumptions can lead to different conclusions about 

the technical efficiency of a firm. The second essay returns to the Aigner and Chu (1968) 

approach of modeling a deterministic frontier using mathematical programming, but 

estimates a parametric stochastic production function with a composed error term instead of a 

one-sided error term. The individual levels of technical efficiency can be estimated without 

any restrictive assumption about the statistical distribution of the error terms. As with any 

mathematical programming approach, we get only point estimates for the parameters of 

interest. In order to overcome this problem, bootstrapping techniques are employed and 

confidence intervals for parameters are constructed.
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The methodology developed in the second essay uses data from the US Census of 

Manufacturing, 1992.

5.4 A Bootstrap Procedure to Capture Unit Specific Effects In Data Envelopment 

Analysis

A drawback of any parametric frontier estimation is the subjective choice of the 

functional form of the frontier. Data Envelopment Analysis, which was first introduced by 

Chames, Cooper and Rhodes (1978, 1981) and is based on the assumptions o f monotonicity, 

convexity and free disposability of inputs and outputs, avoids any functional specification. 

But, it is a mathematical programming approach and can only provide point estimates of the 

relative technical efficiency of a firm. One proposed solution to this problem is to use 

bootstrapping. Simar (1992, 1996) and Simar and Wilson (1997a, 1997b) set the foundation 

for consistent use of bootstrapping. A problem with this approach is that it assumes that all 

the firms in the sample have the same probability of getting an observed technical efficiency 

level, while the firm’s relative efficiency position might be systematically influenced by unit 

specific factors out of the firm’s control. The third essay in this dissertation develops a 

bootstrap procedure that generates the distribution of efficiency for each firm, conditional on 

unit specific factors. Additionally, we construct confidence intervals not for the technical 

efficiency scores but for the expected maximum producible output.

The essay in the fourth chapter includes an application with Connecticut school data 

for the academic year of 1995-1996.
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5.4 Directions for Future Research

A potential extension of the frontier production function model with autoregressively 

time-varying technical efficiency is to specify a one-sided distribution for the technical 

efficiency term, for the half-normal distribution. Also, it will be very interesting to estimate 

the model using Kalman filter and to compare the results from the other two model 

specifications.

Similar to the bootstrap procedure developed in Chapter 4, a bootstrap procedure that 

captures unit specific effects can be also developed for the Free Disposal Hull Analysis 

(FDH) framework, which is an alternative to Data Envelopment Analysis (DEA). FDH 

avoids the convexity assumption for the production technology and thus, is less restrictive.
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